9 resultados para Hamiltonian formalism
em Instituto Politécnico do Porto, Portugal
Resumo:
Deoxyribonucleic acid, or DNA, is the most fundamental aspect of life but present day scientific knowledge has merely scratched the surface of the problem posed by its decoding. While experimental methods provide insightful clues, the adoption of analysis tools supported by the formalism of mathematics will lead to a systematic and solid build-up of knowledge. This paper studies human DNA from the perspective of system dynamics. By associating entropy and the Fourier transform, several global properties of the code are revealed. The fractional order characteristics emerge as a natural consequence of the information content. These properties constitute a small piece of scientific knowledge that will support further efforts towards the final aim of establishing a comprehensive theory of the phenomena involved in life.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.
Resumo:
The Maxwell equations play a fundamental role in the electromagnetic theory and lead to models useful in physics and engineering. This formalism involves integer-order differential calculus, but the electromagnetic diffusion points towards the adoption of a fractional calculus approach. This study addresses the skin effect and develops a new method for implementing fractional-order inductive elements. Two genetic algorithms are adopted, one for the system numerical evaluation and another for the parameter identification, both with good results.
Resumo:
This article presents a dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform. The new dynamic description integrates the concepts of fractional calculus leading to a more natural treatment of the continuum of the Transfer Function parameters intrinsic in this system. The results using system theory tools point out that it is possible to study traffic systems, taking advantage of the knowledge gathered with automatic control algorithms. Dynamics, Games and Science I Dynamics, Games and Science I Look Inside Other actions Export citation About this Book Reprints and Permissions Add to Papers Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn
Resumo:
This paper presents the new package entitled Simulator of Intelligent Transportation Systems (SITS) and a computational oriented analysis of traffic dynamics. The SITS adopts a microscopic simulation approach to reproduce real traffic conditions considering different types of vehicles, drivers and roads. A set of experiments with the SITS reveal the dynamic phenomena exhibited by this kind of system. For this purpose a modelling formalism is developed that embeds the statistics and the Laplace transform. The results make possible the adoption of classical system theory tools and point out that it is possible to study traffic systems taking advantage of the knowledge gathered with automatic control algorithms. A complementary perspective for the analysis of the traffic flow is also quantified through the entropy measure.
Resumo:
The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.
Resumo:
The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal. The SE was first verified by Kelvin in 1887. Since then many researchers developed work on the subject and presently a comprehensive physical model, based on the Maxwell equations, is well established. The Maxwell formalism plays a fundamental role in the electromagnetic theory. These equations lead to the derivation of mathematical descriptions useful in many applications in physics and engineering. Maxwell is generally regarded as the 19th century scientist who had the greatest influence on 20th century physics, making contributions to the fundamental models of nature. The Maxwell equations involve only the integer-order calculus and, therefore, it is natural that the resulting classical models adopted in electrical engineering reflect this perspective. Recently, a closer look of some phenomas present in electrical systems and the motivation towards the development of precise models, seem to point out the requirement for a fractional calculus approach. Bearing these ideas in mind, in this study we address the SE and we re-evaluate the results demonstrating its fractional-order nature.
Resumo:
This paper presents the most recent developments of the Simulator of Intelligent Transportation Systems (SITS). The SITS is based on a microscopic simulation approach to reproduce real traffic conditions in an urban or non-urban network. In order to analyse the quality of the microscopic traffic simulator SITS a benchmark test was performed. A dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform, is then addressed. The paper presents also a new traffic control concept applied to a freeway traffic system.