5 resultados para HUMAN GASTRIC-CANCER
em Instituto Politécnico do Porto, Portugal
Resumo:
Background: Current therapeutic strategies for advanced prostate cancer (PCa) are largely ineffective. Because aberrant DNA methylation associated with inappropriate gene-silencing is a common feature of PCa, DNA methylation inhibitors might constitute an alternative therapy. In this study we aimed to evaluate the anti-cancer properties of RG108, a novel non-nucleoside inhibitor of DNA methyltransferases (DNMT), in PCa cell lines. Methods: The anti-tumoral impact of RG108 in LNCaP, 22Rv1, DU145 and PC-3 cell lines was assessed through standard cell viability, apoptosis and cell cycle assays. Likewise, DNMT activity, DNMT1 expression and global levels of DNA methylation were evaluated in the same cell lines. The effectiveness of DNA demethylation was further assessed through the determination of promoter methylation and transcript levels of GSTP1, APC and RAR-β2, by quantitative methylation-specific PCR and RT-PCR, respectively. Results: RG108 led to a significant dose and time dependent growth inhibition and apoptosis induction in LNCaP, 22Rv1 and DU145. LNCaP and 22Rv1 also displayed decreased DNMT activity, DNMT1 expression and global DNA methylation. Interestingly, chronic treatment with RG108 significantly decreased GSTP1, APC and RAR-β2 promoter hypermethylation levels, although mRNA re-expression was only attained GSTP1 and APC. Conclusions: RG108 is an effective tumor growth suppressor in most PCa cell lines tested. This effect is likely mediated by reversion of aberrant DNA methylation affecting cancer related-genes epigenetically silenced in PCa. However, additional mechanism might underlie the anti-tumor effects of RG108. In vivo studies are now mandatory to confirm these promising results and evaluate the potential of this compound for PCa therapy.
Resumo:
Background Gastric cancer remains a serious health concern worldwide. Patients would greatly benefit from the discovery of new biomarkers that predict outcome more accurately and allow better treatment and follow-up decisions. Here, we used a retrospective, observational study to assess the expression and prognostic value of the transcription factors SOX2 and CDX2 in gastric cancer. Methods SOX2, CDX2, MUC5AC and MUC2 expression were assessed in 201 gastric tumors by immunohistochemistry. SOX2 and CDX2 expression were crossed with clinicopathological and follow-up data to determine their impact on tumor behavior and outcome. Moreover, SOX2 locus copy number status was assessed by FISH (N = 21) and Copy Number Variation Assay (N = 62). Results SOX2 was expressed in 52% of the gastric tumors and was significantly associated with male gender, T stage and N stage. Moreover, SOX2 expression predicted poorer patient survival, and the combination with CDX2 defined two molecular phenotypes, SOX2+CDX2- versus SOX2-CDX2+, that predict the worst and the best long-term patients’ outcome. These profiles combined with clinicopathological parameters stratify the prognosis of patients with intestinal and expanding tumors and in those without signs of venous invasion. Finally, SOX2 locus copy number gains were found in 93% of the samples reaching the amplification threshold in 14% and significantly associating with protein expression. Conclusions We showed, for the first time, that SOX2 combined with CDX2 expression profile in gastric cancer segregate patients into different prognostic groups, complementing the clinicopathological information. We further demonstrate a molecular mechanism for SOX2 expression in a subset of gastric cancer cases.
Resumo:
Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.
Resumo:
Fungi have been considered a potential source of natural anticancer drugs. However, studies on these organisms have mainly focused on compounds present in the sporocarp and mycelium. The aim of this study was to assess the anticancer potential of fungal spores using a bioassay-guided fractionation with cancer and normal cell lines. Crude extracts from spores of the basidiomycetous fungus Pisolithus tinctorius were prepared using five solvents/solvent mixtures in order to select the most effective crude extraction procedure. A dichloromethane/methanol (DCM/MeOH) mixture was found to produce the highest extraction yield, and this extract was fractionated into 11 fractions. Crude extracts and fractions were assayed for cytotoxicity in the human osteocarcinoma cell line MG63, the human breast carcinoma cell line T47D, the human colon adenocarcinoma cell line RKO, and the normal human brain capillary endothelial cell line hCMEC/D3. Cytotoxicity was assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction assay. The results showed a reduction in cancer cell viability of approximately 95% with 4 of 11 fractions without a significant reduction in viability of hCMEC/D3 cells. Data demonstrated that spores of P. tinctorius might serve as an interesting source of compounds with potential anticancer properties.
Resumo:
The relentless discovery of cancer biomarkers demands improved methods for their detection. In this work, we developed protein imprinted polymer on three-dimensional gold nanoelectrode ensemble (GNEE) to detect epithelial ovarian cancer antigen-125 (CA 125), a protein biomarker associated with ovarian cancer. CA 125 is the standard tumor marker used to follow women during or after treatment for epithelial ovarian cancer. The template protein CA 125 was initially incorporated into the thin-film coating and, upon extraction of protein from the accessible surfaces on the thin film, imprints for CA 125 were formed. The fabrication and analysis of the CA 125 imprinted GNEE was done by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The surfaces of the very thin, protein imprinted sites on GNEE are utilized for immunospecific capture of CA 125 molecules, and the mass of bound on the electrode surface can be detected as a reduction in the faradic current from the redox marker. Under optimal conditions, the developed sensor showed good increments at the studied concentration range of 0.5–400 U mL−1. The lowest detection limit was found to be 0.5 U mL−1. Spiked human blood serum and unknown real serum samples were analyzed. The presence of non-specific proteins in the serum did not significantly affect the sensitivity of our assay. Molecular imprinting using synthetic polymers and nanomaterials provides an alternative approach to the trace detection of biomarker proteins.