2 resultados para HPCC
em Instituto Politécnico do Porto, Portugal
Resumo:
The use of multicores is becoming widespread inthe field of embedded systems, many of which have real-time requirements. Hence, ensuring that real-time applications meet their timing constraints is a pre-requisite before deploying them on these systems. This necessitates the consideration of the impact of the contention due to shared lowlevel hardware resources like the front-side bus (FSB) on the Worst-CaseExecution Time (WCET) of the tasks. Towards this aim, this paper proposes a method to determine an upper bound on the number of bus requests that tasks executing on a core can generate in a given time interval. We show that our method yields tighter upper bounds in comparison with the state of-the-art. We then apply our method to compute the extra contention delay incurred by tasks, when they are co-scheduled on different cores and access the shared main memory, using a shared bus, access to which is granted using a round-robin arbitration (RR) protocol.
Resumo:
Knowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables, nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA.