63 resultados para H-Infinity Time-Varying Adaptive Algorithm

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a microwave-assisted extraction (MAE) methodology was compared with several conventional extraction methods (Soxhlet, Bligh & Dyer, modified Bligh & Dyer, Folch, modified Folch, Hara & Radin, Roese-Gottlieb) for quantification of total lipid content of three fish species: horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), and sardine (Sardina pilchardus). The influence of species, extraction method and frozen storage time (varying from fresh to 9 months of freezing) on total lipid content was analysed in detail. The efficiencies of methods MAE, Bligh & Dyer, Folch, modified Folch and Hara & Radin were the highest and although they were not statistically different, differences existed in terms of variability, with MAE showing the highest repeatability (CV = 0.034). Roese-Gottlieb, Soxhlet, and modified Bligh & Dyer methods were very poor in terms of efficiency as well as repeatability (CV between 0.13 and 0.18).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a graphical method to visualize possible time-varying correlations between fifteen stock market values. The method is useful for observing stable or emerging clusters of stock markets with similar behaviour. The graphs, originated from applying multidimensional scaling techniques (MDS), may also guide the construction of multivariate econometric models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure for coupling mesoscale and CFD codes is presented, enabling the inclusion of realistic stratification flow regimes and boundary conditions in CFD simulations of relevance to site and resource assessment studies in complex terrain. Two distinct techniques are derived: (i) in the first one, boundary conditions are extracted from mesoscale results to produce time-varying CFD solutions; (ii) in the second case, a statistical treatment of mesoscale data leads to steady-state flow boundary conditions believed to be more representative than the idealised profiles which are current industry practice. Results are compared with measured data and traditional CFD approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos dias de hoje usar o transporte público para nos deslocarmos de uma determinada origem para um determinado destino é uma realidade na vida da maioria das pessoas. Muitas destas deslocações fazem parte da rotina diária do cidadão, que depende destes transportes para as suas atividades do dia-a-dia. Nos últimos anos, o número de cidadãos que usa os transportes públicos como meio de deslocação tem vindo a aumentar consideravelmente. Contudo, a maioria dos operadores de transportes públicos pecam pela falta de pontualidade dos seus serviços, e pela falta de informação disponível ao cidadão acerca dos horários dos mesmos em tempo real. Tendo este problema em conta, foi desenvolvida uma solução capaz de realizar uma previsão do tempo de chegada de um transporte público, ao longo de todo o seu serviço. Previsão essa que é atualizada ao longo do percurso de forma a reduzir a margem de erro da informação apresentada. Com esta informação o cidadão pode planear melhor o seu dia e decidir qual é a melhor altura para se deslocar para a paragem, evitando ao máximo a perda de tempo à espera do seu transporte público. A solução final foi desenvolvida com a ajuda da empresa BEWARE e teve como objetivo a criação de uma aplicação web capaz de apresentar os tempos de espera dos autocarros em diferentes tipos de vista, bem como o acompanhamento do mesmo ao longo do percurso. Toda a informação utilizada na aplicação web foi criada por dois serviços de apoio que efetuam o controlo do autocarro ao longo do percurso, bem como os cálculos da previsão dos tempos de espera. O projeto foi dividido em quatro constituintes que foram repetidas durante o desenvolvimento da solução. A primeira constou na análise do problema, no levantamento e definição dos requisitos. A segunda incluiu o desenvolvimento de um algoritmo capaz de validar a posição do autocarro ao longo do seu percurso, detetando a paragem onde este se encontra e a hora de chegada à mesma. A terceira abrangeu o desenvolvimento de um algoritmo capaz de prever o tempo de chegada de um autocarro às paragens definidas na sua rota, recorrendo ao histórico de viagens realizadas anteriormente. A quarta consistiu no desenvolvimento da aplicação web, implementando todas as funcionalidades necessárias para que a aplicação consiga realizar o acompanhamento do autocarro no percurso, a consulta dos tempos de chegada e da previsão dos tempos às paragens seguintes recorrendo a três tipos de vistas diferentes, e a possibilidade de agendar notificações de forma a receber no email as previsões dos tempos de chegada nos dias e horas mais significativos para o utilizador.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies multidimensional scaling techniques and Fourier transform for visualizing possible time-varying correlations between 25 stock market values. The method is useful for observing clusters of stock markets with similar behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smartphones and other internet enabled devices are now common on our everyday life, thus unsurprisingly a current trend is to adapt desktop PC applications to execute on them. However, since most of these applications have quality of service (QoS) requirements, their execution on resource-constrained mobile devices presents several challenges. One solution to support more stringent applications is to offload some of the applications’ services to surrogate devices nearby. Therefore, in this paper, we propose an adaptable offloading mechanism which takes into account the QoS requirements of the application being executed (particularly its real-time requirements), whilst allowing offloading services to several surrogate nodes. We also present how the proposed computing model can be implemented in an Android environment

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a 12*(1+|R|/(4m))-speed algorithm for scheduling constrained-deadline sporadic real-time tasks on a multiprocessor comprising m processors where a task may request one of |R| sequentially-reusable shared resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.