8 resultados para Gold and palladium alloy nanoparticles

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actualmente, a poluição do ar, água e solo são problemáticas nas quais se têm centrado diversos estudos. Reduzir ou eliminar a concentração dos diversos poluentes presentes nestes meios é uma meta que se pretende atingir. Neste âmbito, têm sido desenvolvidos diversos estudos e trabalhos, utilizando diversas tecnologias, como químicas e biológicas, de forma a conseguir-se atingir este fim. Esta tese teve como principal objectivo estudar a remediação de solos contaminados com produtos farmacêuticos recorrendo à oxidação/redução química. Assim, começou por se estudar a remediação de água contaminada com ibuprofeno, uma vez, que a matriz líquida é mais fácil de estudar que o solo. Neste âmbito escolheram-se os seguintes reagentes para estudar a descontaminação da água: permanganato de potássio, reagente de Fenton e nanopartículas de ferro zero valente. Analisando os resultados obtidos nestas análises, verificou-se que o permanganato de potássio não foi capaz de reduzir a concentração de ibuprofeno presente na água. No entanto, o reagente de Fenton e as nanopartículas produzidas a partir do extracto da casca de castanha e do chá conseguirem reagir com o ibuprofeno, apresentando taxas de degradação de 90 % e 77 %, respectivamente, nas melhores condições experimentadas. Com os resultados obtidos, passou-se a analisar solos contaminados com o ibuprofeno, utilizando o reagente de Fenton e as nanopartículas produzidas a partir de um extracto de chá. Verificou-se que estes reagentes conseguiram reduzir a concentração de ibuprofeno presente no solo (areia) para valores residuais, obtendo-se taxas de degradação acima de 95 % após 5 dias de reacção. Conclui-se que, o objectivo principal desta tese foi cumprido pois foi reduzida, e quase eliminada, a concentração do ibuprofeno presente no solo, recorrendo à oxidação/redução química.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There is an imminent need for rapid methods to detect and determine pathogenic bacteria in food products as alternatives to the laborious and time-consuming culture procedures. In this work, an electrochemical immunoassay using iron/gold core/shell nanoparticles (Fe@Au) conjugated with anti-Salmonella antibodies was developed. The chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles is reported. Fe@Au nanoparticles were functionalized with different self-assembled monolayers and characterized using ultraviolet-visible spectrometry, transmission electron microscopy, and voltammetric techniques. The determination of Salmonella typhimurium, on screen-printed carbon electrodes, was performed by square-wave anodic stripping voltammetry through the use of CdS nanocrystals. The calibration curve was established between 1×101 and 1×106 cells/mL and the limit of detection was 13 cells/mL. The developed method showed that it is possible to determine the bacteria in milk at low concentrations and is suitable for the rapid (less than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the developed methodology could contribute to the improvement of the quality control of food samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies ( MUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, MUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on MUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wide spread use and strong reliance on both fertilizers and pesticides made of agrigenic pollution one of the major contemporary threats to environment and human health. Impacts on the environment vary from local effects, such as eutrophycation1, 2, loss of biodiversity and diminished ecosystem health3, to global effects, such as the aggravation of global warming2, 4 and ozone layer depletion5. The novelty of nanoremediation and its early successes, reported for various contexts, present the prospect for the development of relevant applications for agrigenic contaminants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A gold nanoparticle-coated screen-printed carbon electrode was used as the transducer in the development of an electrochemical immunosensor for Ara h 1 (a major peanut allergen) detection in food samples. Gold nanoparticles (average diameter=32 nm) were electrochemically generated on the surface of screen-printed carbon electrodes. Two monoclonal antibodies were used in a sandwich-type immunoassay and the antibody–antigen interaction was electrochemically detected through stripping analysis of enzymatically (using alkaline phosphatase) deposited silver. The total time of the optimized immunoassay was 3 h 50 min. The developed immunosensor allowed the quantification of Ara h 1 between 12.6 and 2000 ng/ml, with a limit of detection of 3.8 ng/ml, and provided precise (RSD <8.7%) and accurate (recovery >96.6%) results. The immunosensor was successfully applied to the analysis of complex food matrices (cookies and chocolate), being able to detect Ara h 1 in samples containing 0.1% of peanut.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra-added stabilizers is described. The synthesis proposed in this work may impact on the non-polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10−7–1.5×10−5 M concentration range, a good detection sensitivity (0.268 A L mol−1), and a low detection limit of 2.0×10−7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmental nanoremediation of various contaminants has been reported in several recent studies. In this paper, the state of the art on the use of nanoparticles in soil and groundwater remediation processes is presented. There is a substantive body of evidence on the growing and successful application of nanoremediation for a diversity of soil and groundwater contamination contexts, particularly, for heavy metals, other inorganic contaminants, organic contaminants and emerging contaminants, as pharmaceutical and personal care products. This review confirms the competence of the use of nanoparticles in the remediation of contaminated media and the prevalent use of iron based nanoparticles.