9 resultados para Geomorphological mapping
em Instituto Politécnico do Porto, Portugal
Resumo:
O presente trabalho apresenta os resultados dos estudos geotécnicos e de uma base de dados da zona ribeirinha de Vila Nova de Gaia, com o objectivo de compreender melhor os aspectos geotécnicos em ambiente urbano numa área sensível com um registo histórico de instabilidade de taludes rochosos. Além disso, os escassos estudos científicos recentes de natureza geológica e geotécnica em Vila Nova de Gaia justificam o estudo exploratório da geotecnia urbana da zona ribeirinha de Vila Nova de Gaia. A importância de Vila Nova de Gaia como a terceira maior cidade portuguesa e como centro de intensa actividade económica e cultural despoleta uma constante necessidade de expansão. O aumento da densidade populacional acarreta a realização de projectos complexos de engenharia, utilizando o subsolo para a construção e, com frequência, em terrenos com características geotécnicas desfavoráveis. As cidades de Vila Nova de Gaia e do Porto foram sendo edificadas ao longo de encostas numa plataforma litoral caracterizada por uma vasta área aplanada, inclinando ligeiramente para Oeste. Esta plataforma foi cortada pelo Rio Douro num vale encaixado de vertentes abruptas, nas quais se localizam as zonas ribeirinhas das duas cidades. Este trabalho envolveu, inicialmente, uma caracterização topográfica, morfoestrutural, geotectónica e geomecânica da área de estudo e, numa fase posterior, o desenvolvimento duma base de dados geotécnica. Todos os dados geológicos e geotécnicos locais e os estudos geotécnicos levados a cabo in situ pelas diversas empresas e instituições foram representados cartograficamente numa base apoiada pelos Sistemas de Informação Geográfica (SIG). Esta metodologia inter‐disciplinar foi de grande valor para um melhor conhecimento dos riscos geológico‐geotécnicos ao longo das margens do Rio Douro. De facto, a cartografia geotécnica da zona ribeirinha de Vila Nova de Gaia deve constituir uma ferramenta importante para uma previsão mais rigorosa de futuras instabilidades de taludes e um bom instrumento para a gestão do espaço urbano.
Resumo:
Neste trabalho, apresentam-se e discutem-se os resultados da aplicação da técnica de amostragem linear de descontinuidades em faces expostas do maciço rochoso da pedreira granítica de S. Domingos Nº 2 (Fontelo, Armamar; N de Portugal). É, igualmente, utilizada informação sobre a rede de fracturação regional, obtida através da análise morfoestrutural de mapas topográficos e mapas geológicos. São ainda referidos os métodos utilizados no tratamento dos dados de terreno com o objectivo de definir as famílias de descontinuidades e de caracterizar estatísticamente a sua atitude, espaçamento e extensão. Os resultados obtidos são comparados, à mega escala e macro-escala, no sentido de averiguar a presença de um padrão de fracturação com dimensão multiescala. Esta abordagem foi refinada através da aplicação de Sistemas de Informação Geográfica. A aplicação desta técnica para a caracterização da compartimentação do maciço poderá contribuir para aperfeiçoar a gestão sustentável do georrecurso da pedreira de S. Domingos Nº 2 (Fontelo). O controlo geomecânico do desmonte do maciço rochoso é salientado com o intuito de uma abordagem de geo-engenharia integrada dos maciços rochosos.
Resumo:
This paper presents the application of multidimensional scaling (MDS) analysis to data emerging from noninvasive lung function tests, namely the input respiratory impedance. The aim is to obtain a geometrical mapping of the diseases in a 3D space representation, allowing analysis of (dis)similarities between subjects within the same pathology groups, as well as between the various groups. The adult patient groups investigated were healthy, diagnosed chronic obstructive pulmonary disease (COPD) and diagnosed kyphoscoliosis, respectively. The children patient groups were healthy, asthma and cystic fibrosis. The results suggest that MDS can be successfully employed for mapping purposes of restrictive (kyphoscoliosis) and obstructive (COPD) pathologies. Hence, MDS tools can be further examined to define clear limits between pools of patients for clinical classification, and used as a training aid for medical traineeship.
Resumo:
Mestrado em Engenharia Geotécnica e Geoambiente
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
Many-core platforms are an emerging technology in the real-time embedded domain. These devices offer various options for power savings, cost reductions and contribute to the overall system flexibility, however, issues such as unpredictability, scalability and analysis pessimism are serious challenges to their integration into the aforementioned area. The focus of this work is on many-core platforms using a limited migrative model (LMM). LMM is an approach based on the fundamental concepts of the multi-kernel paradigm, which is a promising step towards scalable and predictable many-cores. In this work, we formulate the problem of real-time application mapping on a many-core platform using LMM, and propose a three-stage method to solve it. An extended version of the existing analysis is used to assure that derived mappings (i) guarantee the fulfilment of timing constraints posed on worst-case communication delays of individual applications, and (ii) provide an environment to perform load balancing for e.g. energy/thermal management, fault tolerance and/or performance reasons.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.
Resumo:
Hard‐rock watersheds commonly exhibit complex geological bedrock and morphological features. Hydromineral resources have relevant economic value for the thermal spas industry. The present study aims to develop a groundwater vulnerability approach in Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal) which has a thermal tradition that dates back to the late 19th century, and contribute to a better understanding of the hydrogeological conceptual site model. In this work different layers were overlaid, generating several thematic maps to arrive at an integrated framework of several key‐sectors in Caldas da Cavaca site. Thus, to accomplish a comprehensive analysis and conceptualization of the site, a multi‐technical approach was used, such as, field and laboratory techniques, where several data was collected, like geotectonics, hydrology and hydrogeology, hydrogeomorphology, hydrogeophysical and hydrogeomechanical zoning aiming the application of the so‐called DISCO method. All these techniques were successfully performed and a groundwater vulnerability to contamination assessment, based on GOD‐S, DRASTIC‐Fm, SINTACS, SI and DISCO indexes methodology, was delineated. Geographical Information Systems (GIS) technology was on the basis to organise and integrate the geodatabases and to produce all the thematic maps. This multi‐technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualisation, contributing to better decision‐making of water resources management and sustainability.