3 resultados para Genetic population data
em Instituto Politécnico do Porto, Portugal
Resumo:
Introduction: Healthcare improvements have allowed prevention but have also increased life expectancy, resulting in more people being at risk. Our aim was to analyse the separate effects of age, period and cohort on incidence rates by sex in Portugal, 2000–2008. Methods: From the National Hospital Discharge Register, we selected admissions (aged ≥49 years) with hip fractures (ICD9-CM, codes 820.x) caused by low/moderate trauma (falls from standing height or less), readmissions and bone cancer cases. We calculated person-years at risk using population data from Statistics Portugal. To identify period and cohort effects for all ages, we used an age–period–cohort model (1-year intervals) followed by generalised additive models with a negative binomial distribution of the observed incidence rates of hip fractures. Results: There were 77,083 hospital admissions (77.4 % women). Incidence rates increased exponentially with age for both sexes (age effect). Incidence rates fell after 2004 for women and were random for men (period effect). There was a general cohort effect similar in both sexes; risk of hip fracture altered from an increasing trend for those born before 1930 to a decreasing trend following that year. Risk alterations (not statistically significant) coincident with major political and economic change in the history of Portugal were observed around birth cohorts 1920 (stable–increasing), 1940 (decreasing–increasing) and 1950 (increasing–decreasing only among women). Conclusions: Hip fracture risk was higher for those born during major economically/politically unstable periods. Although bone quality reflects lifetime exposure, conditions at birth may determine future risk for hip fractures.
Resumo:
This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.
Resumo:
OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.