12 resultados para Galois extensions of local commutative rings
em Instituto Politécnico do Porto, Portugal
Resumo:
We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.
Resumo:
The influence of uncertainties of input parameters on output response of composite structures is investigated in this paper. In particular, the effects of deviations in mechanical properties, ply angles, ply thickness and on applied loads are studied. The uncertainty propagation and the importance measure of input parameters are analysed using three different approaches: a first-order local method, a Global Sensitivity Analysis (GSA) supported by a variance-based method and an extension of local variance to estimate the global variance over the domain of inputs. Sample results are shown for a shell composite laminated structure built with different composite systems including multi-materials. The importance measures of input parameters on structural response based on numerical results are established and discussed as a function of the anisotropy of composite materials. Needs for global variance methods are discussed by comparing the results obtained from different proposed methodologies. The objective of this paper is to contribute for the use of GSA techniques together with low expensive local importance measures.
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
We introduce a new wavelet transform within the framework of the local fractional calculus. An illustrative example of local fractional wavelet transform is also presented.
Joint effects of salinity and the antidepressant sertraline on the estuarine decapod Carcinus maenas
Resumo:
Concurrent exposure of estuarine organisms to man-made and natural stressors has become a common occurrence. Numerous interactions of multiple stressors causing synergistic or antagonistic effects have been described. However, limited information is available on combined effects of emerging pharmaceuticals and natural stressors. This study investigated the joint effects of the antidepressant sertraline and salinity on Carcinus maenas. To improve knowledge about interactive effects and potential vulnerability,experiments were performed with organisms from two estuaries with differing histories of exposure to environmental contamination. Biomarkers related to mode of action of sertraline were employed to assess effects of environmentally realistic concentrations of sertraline at two salinity levels. Synergism and antagonism were identified for biomarkers of cholinergic neurotransmission, energy production,anti-oxidant defences and oxidative damage. Different interactions were found for the two study sites highlighting the need to account for differences in tolerance of local ecological receptors in risk evaluations.
Resumo:
Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.
Resumo:
Sol-gel chemistry allows the immobilization of organic molecules of biological origin on suibtable solid supports, permitting their integration into biosensing devices widening the possibility of local applications. The present work is an application of this principle, where the link between electrical receptor platform and the antibody acting as biorecognition element is made by sol-gel chemistry. The immunosensor design was targeted for carcinoembryonic antigen (CEA), an important biomarker for screening the colorectal cancer, by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SVW). The device displayed linear behavior to CEA in EIS and in SWV assays ranging from 0.50 to 1.5ng/mL, and 0.25 to 1.5ng/mL, respectively. The corresponding detection limits were 0.42 and 0.043 ng/mL. Raman spectroscopy was used to characterize the surface modifications on the conductive platform (FTO glass). Overall, simple sol-gel chemistry was effective at the biosensing design and the presented approach can be a potential method for screening CEA in point-of-care, due to the simplicity of fabrication, short response time and low cost. - See more at: http://www.eurekaselect.com/127192/article#sthash.m1AWhINx.dpuf
Resumo:
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
Resumo:
The excessive use of pesticides and fertilisers in agriculture has generated a decrease in groundwater and surface water quality in many regions of the EU, constituting a hazard for human health and the environment. Besides, on-site sewage disposal is an important source of groundwater contamination in urban and peri-urban areas. The assessment of groundwater vulnerability to contamination is an important tool to fulfil the demands of EU Directives. The purpose of this study is to assess the groundwater vulnerability to contamination related mainly to agricultural activities in a peri-urban area (Vila do Conde, NW Portugal). The hydrogeological framework is characterised mainly by fissured granitic basement and sedimentary cover. Water samples were collected and analysed for temperature, pH, electrical conductivity, chloride, phosphate, nitrate and nitrite. An evaluation of groundwater vulnerability to contamination was applied (GOD-S, Pesticide DRASTIC-Fm, SINTACS and SI) and the potential nitrate contamination risk was assessed, both on a hydrogeological GIS-based mapping. A principal component analysis was performed to characterised patterns of relationship among groundwater contamination, vulnerability, and the hydrogeological setting assessed. Levels of nitrate above legislation limits were detected in 75 % of the samples analysed. Alluvia units showed the highest nitrate concentrations and also the highest vulnerability and risk. Nitrate contamination is a serious problem affecting groundwater, particularly shallow aquifers, especially due to agriculture activities, livestock and cesspools. GIS-based cartography provided an accurate way to improve knowledge on water circulation models and global functioning of local aquifer systems. Finally, this study highlights the adequacy of an integrated approach, combining hydrogeochemical data, vulnerability assessments and multivariate analysis, to understand groundwater processes in peri-urban areas.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?
Resumo:
Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.
Resumo:
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so-called local mechanisms, often associated with the out-of-plane wall behavior, whose stability is evaluated by static force-based approaches and, more recently, by some displacement-based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no-tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi-body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full-scale shaking-table tests on stone masonry buildings: a sacco-stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two-storey double-leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE).