17 resultados para Galaxies : Elliptical And Lenticular, Cd
em Instituto Politécnico do Porto, Portugal
Resumo:
The most consumed squid species worldwide were characterized regarding their concentrations of minerals, fatty acids, cholesterol and vitamin E. Interspecific comparisons were assessed among species and geographical origin. The health benefits derived from squid consumption were assessed based on daily minerals intake and on nutritional lipid quality indexes. Squids contribute significantly to daily intake of several macro (Na, K, Mg and P) and micronutrients (Cu, Zn and Ni). Despite their low fat concentration, they are rich in long-chain omega-3 fatty acids, particularly docosahexaenoic (DHA) and eicosapentanoic (EPA) acids, with highly favorable ω-3/ω-6 ratios (from 5.7 to 17.7), reducing the significance of their high cholesterol concentration (140–549 mg/100 g ww). Assessment of potential health risks based on minerals intake, non-carcinogenic and carcinogenic risks indicated that Loligo gahi (from Atlantic Ocean), Loligo opalescens (from Pacific Ocean) and Loligo duvaucelii (from Indic Ocean) should be eaten with moderation due to the high concentrations of Cu and/or Cd. Canonical discriminant analysis identified the major fatty acids (C14:0, C18:0, C18:1, C18:3ω-3, C20:4ω-6 and C22:5ω-6), P, K, Cu and vitamin E as chemical discriminators for the selected species. These elements and compounds exhibited the potential to prove authenticity of the commercially relevant squid species.
Resumo:
When a pesticide is released into the environment, most of it is lost before it reaches its target. An effective way to reduce environmental losses of pesticides is by using controlled release technology. Microencapsulation becomes a promising technique for the production of controlled release agricultural formulations. In this work, the microencapsulation of chlorophenoxy herbicide MCPA with native b-cyclodextrin and its methyl and hydroxypropyl derivatives was investigated. The phase solubility study showed that both native and b-CD derivatives increased the water solubility of the herbicide and inclusion complexes are formed in a stoichiometric ratio of 1:1. The stability constants describing the extent of formation of the complexes have been determined by phase solubility studies. 1H NMR experiments were also accomplished for the prepared solid systems and the data gathered confirm the formation of the inclusion complexes. 1H NMR data obtained for the MCPA/CDs complexes disclosed noticeable proton shift displacements for OCH2 group and H6 aromatic proton of MCPA provided clear evidence of inclusion complexation process, suggesting that the phenyl moiety of the herbicide was included in the hydrophobic cavity of CDs. Free energy molecular mechanics calculations confirm all these findings. The gathered results can be regarded as an essential step to the development of controlled release agricultural formulations containing herbicide MCPA.
Resumo:
Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p<0.001) were only apparent for Mn. The Mann–Whitney U-test was used to search for significant differences between flavoured and natural waters. The concentration of each element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p<0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.
Resumo:
Specific marine macro algae species abundant at the Portuguese coast (Laminaria hyperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75–100 mg L−1. The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9–39.5, 18.6–32.0 and 32.3–50.4 mg g−1, respectively. Kinetic studies revealed that the metal uptake rate was rather fast, with 75% of the total amount occurring in the first 10 min for all algal species. Experimental data were well fitted by a pseudo-second order rate equation. The contribution of internal diffusion mechanism was significant only to the initial biosorption stage. Results indicate that all the studied macro algae species can provide an efficient and cost-effective technology for eliminating heavy metals from industrial effluents.
Resumo:
Metal contamination of the environment is frequently associated to the presence of two or more metals. This work aimed to study the impact of a mixture of metals (Cd, Pb and Zn) on the physiology of the non-conventional yeast Pichia kudriavzevii. The incubation of yeast cells with 5 mg/l Cd, 10 mg/l Pb and 5 mg/l Zn, for 6 h, induced a loss of metabolic activity (assessed by FUN-1 staining) and proliferation capacity (evaluated by a clonogenic assay), with a small loss of membrane integrity (measured by trypan blue exclusion assay). The staining of yeast cells with calcofluor white revealed that no modification of chitin deposition pattern occurred during the exposure to metal mixture. Extending for 24 h, the exposure of yeast cells to metal mixture provoked a loss of membrane integrity, which was accompanied by the leakage of intracellular components. A marked loss of the metabolic activity and the loss of proliferation capacity were also observed. The analysis of the impact of a single metal has shown that, under the conditions studied, Pb was the metal responsible for the toxic effect observed in the metal mixture. Intracellular accumulation of Pb seems to be correlated with the metals' toxic effects observed.
Resumo:
Metals are ubiquitous in the environment and accumulate in aquatic organisms and are known for their ability to enhance the production of reactive oxygen species (ROS). In aquatic species, oxidative stress mechanisms have been studied by measuring antioxidant enzyme activities and oxidative damages in tissues. The aim of this study was to apply and validate a set of oxidative stress biomarkers and correlate responses with metal contents in tissues of common octopus (Octopus vulgaris). Antioxidant enzyme activity (catalase — CAT, superoxide dismutase — SOD and glutathione S-transferases — GST), oxidative damages (lipid peroxidation — LPO and protein carbonyl content — PCO) andmetal content (Cu, Zn, Pb, Cd and As) in the digestive gland and armof octopus, collected in the NWPortuguese coast in different periods, were assessed after capture and after 14 days in captivity. CAT and SOD activitieswere highly responsive to fluctuations inmetal concentrations and able to reduce oxidative damage, LPO and PCO in the digestive gland. CAT activity was also positively correlated with SOD and GST activities, which emphasizes that the three enzymes respond in a coordinated way to metal induced oxidative stress. Our results validate the use of oxidative stress biomarkers to assess metal pollution effects in this ecological and commercial relevant species.Moreover, octopus seems to have the ability to control oxidative damage by triggering an antioxidant enzyme coordinated response in the digestive gland.
Resumo:
In this work we isolated from soil and characterized several bacterial strains capable of either resisting high concentrations of heavy metals (Cd2+ or Hg2+ or Pb2+) or degrading the common soil and groundwater pollutants MTBE (methyl-tertbutyl ether) or TCE (trichloroethylene). We then used soil microcosms exposed to MTBE (50 mg/l) or TCE (50 mg/l) in the presence of one heavy metal (Cd 10 ppm or Hg 5 ppm or Pb 50 or 100 ppm) and two bacterial isolates at a time, a degrader plus a metalresistant strain. Some of these two-membered consortia showed degradation efficiencies well higher (49–182% higher) than those expected under the conditions employed, demonstrating the occurrence of a synergetic relationship between the strains used. Our results show the efficacy of the dual augmentation strategy for MTBE and TCE bioremediation in the presence of heavy metals.
Resumo:
Celiac disease (CD) is an autoimmune enteropathy, characterized by an inappropriate T-cell-mediated immune response to the ingestion of certain dietary cereal proteins in genetically susceptible individuals. This disorder presents environmental, genetic, and immunological components. CD presents a prevalence of up to 1% in populations of European ancestry, yet a high percentage of cases remain underdiagnosed. The diagnosis and treatment should be made early since untreated disease causes growth retardation and atypical symptoms, like infertility or neurological disorders. The diagnostic criteria for CD, which requires endoscopy with small bowel biopsy, have been changing over the last few decades, especially due to the advent of serological tests with higher sensitivity and specificity. The use of serological markers can be very useful to rule out clinical suspicious cases and also to help monitor the patients, after adherence to a gluten-free diet. Since the current treatment consists of a life-long glutenfree diet, which leads to significant clinical and histological improvement, the standardization of an assay to assess in an unequivocal way gluten in gluten-free foodstuff is of major importance.
Resumo:
The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) were determined in five commercially valuable squid species from different geographical origins (Atlantic, Indic and Pacific Oceans). Out of the 18 quantified PAHs (the 16 PAHs considered by US EPA as priority pollutants, dibenzo(a,l)pyrene and benzo(j)fluoranthene) only dibenz(a,h)anthracene was not detected. The total concentrations of PAHs varied by a factor of more than 100-fold, from 0.22 (Loligo gahi) to 60.9 lg/kg ww (Loligo reynaudii). Intraand inter-specific variability of PAH levels was statistically assessed. Nine carcinogenic (probable/possible) PAHs accounted for 1% (L. reynaudii) to 26% (Loligo opalescens) of the total PAHs content being the main contributors naphthalene (in Loligo duvaucelii, L. reynaudii and Loligo vulgaris species), chrysene (in L. opalescens) and indeno(1,2,3-cd)pyrene (in L. gahi). PAHs source analysis indicated that four of the five zones of capture of the different squid species are significantly affected by both petrogenic and pyrolytic sources. Assessment of the target carcinogenic risks, established by the US EPA, suggested that L. gahi (Atlantic Ocean) and L. opalescens (from Pacific Ocean) may pose additional risks for consumers, if not eaten in moderation, derived from benzo(a)pyrene ingestion.
Resumo:
New strategies to reduce the environmental and economic costs of pesticides use are currently under study. Microencapsulation has been used as a versatile tool for the production of controlled release agricultural formulations. In this study, the photochemical degradation of the herbicides MCPA and mecoprop has been investigated in different aqueous media such as ultrapure and river water under simulated solar irradiation. To explore the possibility of introducing cyclodextrins in the herbicide formulations, the photodegradation study of the inclusion complexes of MCPA and mecoprop with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was also performed. The half-lives of MCPA and mecoprop inclusion complexes were increased approximately by a factor of three related to the free molecules. Additionally, it has been shown that the photodegradation of MCPA and mecoprop is influenced by their structural features. The additional methyl group existing in mecoprop molecular structure has a positive influence on the stabilization of the radical intermediate formed in the first stage of photodegradation of both herbicides. The results found indicated that MCPA and mecoprop form inclusion complexes with HP-β-CD showing higher photostability compared to free herbicides indicating that HP-β-CD may serve as ingredient in these herbicide formulations.
Resumo:
In the face of a growing human population and increased urbanization, the demand for pesticides will simply rise. Farmers must escalate yields on increasingly fewer farm acres. However, the risks of pesticides, whether real or perceived, may force changes in the way these chemicals are used. Scientists are working toward pest control plans that are environmentally sound, effective, and profitable. In this context the development of new pesticide formulations which may improve application effectiveness, safety, handling, and storage can be pointed out as a solution. As a contribution to the area, the microencapsulation of the herbicide oxadiargyl (OXA) in (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was performed. The study was conducted in different aqueous media (ultrapure water and in different pH buffer solutions). In all cases an increment of the oxadiargyl solubility as a function of the HP-β-CD concentration that has been related to the formation of an inclusion complex was verified. UV-Vis and NMR experiments allowed concluding that the stoichiometry of the OXA/HP-β-CD complex formed is 1 : 1. The gathered results can be regarded as an important step for its removal from industrial effluents and/or to increase the stabilizing action, encapsulation, and adsorption in water treatment plants.
Resumo:
Ethernet is the most popular LAN technology. Its low price and robustness, resulting from its wide acceptance and deployment, has created an eagerness to expand its responsibilities to the factory-floor, where real-time requirements are to be fulfilled. However, it is difficult to build a real-time control network using Ethernet, because its MAC protocol, the 1-persistent CSMA/CD protocol with the BEB collision resolution algorithm, has unpredictable delay characteristics. Many anticipate that the recent technological advances in Ethernet such as the emerging Fast/Gigabit Ethernet, micro-segmentation and full-duplex operation using switches will also enable it to support time-critical applications. This technical report provides a comprehensive look at the unpredictability inherent to Ethernet and at recent technological advances towards real-time operation.
Resumo:
Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.
Resumo:
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.
Resumo:
The ready biodegradability of four chelating agents, N,N -(S,S)-bis[1-carboxy-2-(imidazol-4-yl)ethyl]ethylenediamine (BCIEE), N - ethylenedi-L-cysteine (EC), N,N -bis (4-imidazolymethyl)ethylenediamine (EMI) and 2,6-pyridine dicarboxylic acid (PDA), was tested according to the OECD guideline for testing of chemicals. PDA proved to be a readily biodegradable substance. However, none of the other three compounds were degraded during the 28 days of the test. Chemical simulations were performed for the four compounds in order to understand their ability to complex with some metal ions (Ca, Cd, Co, Cu, Fe, Mg, Mn, Ni, Pb, Zn) and discuss possible applications of these chelating agents. Two different conditions were simulated: (i) in the presence of the chelating agent and one metal ion, and (ii) in the simultaneous presence of the chelating agent and all metal ions with an excess of Ca. For those compounds that were revealed not to be readily biodegradable (BCIEE, EC and EMI), applications were evaluated where this property was not fundamental or even not required. Chemical simulations pointed out that possible applications for these chelating agents are: food fortification, food process, fertilizers, biocides, soil remediation and treatment of metal poisoning. Additionally, chemical simulations also predicted that PDA is an efficient chelating agent for Ca incrustations removal, detergents and for pulp metal ions removal process.