3 resultados para GSI (Grid Security Infrastructure)

em Instituto Politécnico do Porto, Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution systems are the first volunteers experiencing the benefits of smart grids. The smart grid concept impacts the internal legislation and standards in grid-connected and isolated distribution systems. Demand side management, the main feature of smart grids, acquires clear meaning in low voltage distribution systems. In these networks, various coordination procedures are required between domestic, commercial and industrial consumers, producers and the system operator. Obviously, the technical basis for bidirectional communication is the prerequisite of developing such a coordination procedure. The main coordination is required when the operator tries to dispatch the producers according to their own preferences without neglecting its inherent responsibility. Maintenance decisions are first determined by generating companies, and then the operator has to check and probably modify them for final approval. In this paper the generation scheduling from the viewpoint of a distribution system operator (DSO) is formulated. The traditional task of the DSO is securing network reliability and quality. The effectiveness of the proposed method is assessed by applying it to a 6-bus and 9-bus distribution system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of the electrical grid into a smart grid, allowing user production, storage and exchange of energy, remote control of appliances, and in general optimizations over how the energy is managed and consumed, is also an evolution into a complex Information and Communication Technology (ICT) system. With the goal of promoting an integrated and interoperable smart grid, a number of organizations all over the world started uncoordinated standardization activities, which caused the emergence of a large number of incompatible architectures and standards. There are now new standardization activities which have the goal of organizing existing standards and produce best practices to choose the right approach(es) to be employed in specific smart grid designs. This paper follows the lead of NIST and ETSI/CEN/CENELEC approaches in trying to provide taxonomy of existing solutions; our contribution reviews and relates current ICT state-of-the-art, with the objective of forecasting future trends based on the orientation of current efforts and on relationships between them. The resulting taxonomy provides guidelines for further studies of the architectures, and highlights how the standards in the last mile of the smart grid are converging to common solutions to improve ICT infrastructure interoperability.