9 resultados para GOLD STAGES

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an imminent need for rapid methods to detect and determine pathogenic bacteria in food products as alternatives to the laborious and time-consuming culture procedures. In this work, an electrochemical immunoassay using iron/gold core/shell nanoparticles (Fe@Au) conjugated with anti-Salmonella antibodies was developed. The chemical synthesis and functionalization of magnetic and gold-coated magnetic nanoparticles is reported. Fe@Au nanoparticles were functionalized with different self-assembled monolayers and characterized using ultraviolet-visible spectrometry, transmission electron microscopy, and voltammetric techniques. The determination of Salmonella typhimurium, on screen-printed carbon electrodes, was performed by square-wave anodic stripping voltammetry through the use of CdS nanocrystals. The calibration curve was established between 1×101 and 1×106 cells/mL and the limit of detection was 13 cells/mL. The developed method showed that it is possible to determine the bacteria in milk at low concentrations and is suitable for the rapid (less than 1 h) and sensitive detection of S. typhimurium in real samples. Therefore, the developed methodology could contribute to the improvement of the quality control of food samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an amperometric biosensor constructed by associating tyrosinase (Tyr) enzyme with the advantages of a 3D gold nanoelectrode ensemble (GNEE) is evaluated in a flow-injection analysis (FIA) system for the analysis of l-dopa. GNEEs were fabricated by electroless deposition of the metal within the pores of polycarbonate track-etched membranes. A simple solvent etching procedure based on the solubility of polycarbonate membranes is adopted for the fabrication of the 3D GNEE. Afterward, enzyme was immobilized onto preformed self-assembled monolayers of cysteamine on the 3D GNEEs (GNEE-Tyr) via cross-linking with glutaraldehyde. The experimental conditions of the FIA system, such as the detection potential (−0.200 V vs. Ag/AgCl) and flow rates (1.0 mL min−1) were optimized. Analytical responses for l-dopa were obtained in a wide concentration range between 1 × 10−8 mol L−1 and 1 × 10−2 mol L−1. The limit of quantification was found to be 1 × 10−8 mol L−1 with a resultant % RSD of 7.23% (n = 5). The limit of detection was found to be 1 × 10−9 mol L−1 (S/N = 3). The common interfering compounds, namely glucose (10 mmol L−1), ascorbic acid (10 mmol L−1), and urea (10 mmol L−1), were studied. The recovery of l-dopa (1 × 10−7 mol L−1) from spiked urine samples was found to be 96%. Therefore, the developed method is adequate to be applied in the clinical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies ( MUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, MUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on MUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave-assisted solvent extraction was combined with anodic adsorptive stripping voltammetry at a gold microelectrode to extract and quantify the herbicide atrazine in spiked soil samples. A systematic study of the experimental parameters affecting the stripping response was carried out by square-wave voltammetry. The voltammetric procedure is based on controlled adsorptive accumulation of atrazine at the potential of 0.35V (versus Ag/AgCl) in the presence of Britton–Robinson buffer pH (2.0). The limit of detection obtained for a 30 sec collection time was 4.3x10-7 mol L-1. Recovery experiments, at the 1µgg-1 level of spiking, gave good results for the global procedure, and the values found were comparable to those obtained by HPLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extraction-anodic adsorptive stripping voltammetric procedure using microwave-assisted solvent extraction and a gold ultramicroelectrode was developed for determining the pesticide ametryn in soil samples. The method is based on the use of acetonitrile as extraction solvent and on controlled adsorptive accumulation of the herbicide at the potential of 0.50 V (vs. Ag/AgCl) in the presence of Britton-Robinson buffer (pH 3.3). Soil sample extracts were analysed directly after drying and redissolution with the supporting electrolyte but without other pre-treatment. The limit of detection obtained for a 10 s collection time was 0.021 µg g-1. Recovery experiments for the global procedure, at the 0.500 µg g-1 level, gave satisfactory mean and standard deviation results which were comparable to those obtained by HPLC with UV detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gold nanoparticle-coated screen-printed carbon electrode was used as the transducer in the development of an electrochemical immunosensor for Ara h 1 (a major peanut allergen) detection in food samples. Gold nanoparticles (average diameter=32 nm) were electrochemically generated on the surface of screen-printed carbon electrodes. Two monoclonal antibodies were used in a sandwich-type immunoassay and the antibody–antigen interaction was electrochemically detected through stripping analysis of enzymatically (using alkaline phosphatase) deposited silver. The total time of the optimized immunoassay was 3 h 50 min. The developed immunosensor allowed the quantification of Ara h 1 between 12.6 and 2000 ng/ml, with a limit of detection of 3.8 ng/ml, and provided precise (RSD <8.7%) and accurate (recovery >96.6%) results. The immunosensor was successfully applied to the analysis of complex food matrices (cookies and chocolate), being able to detect Ara h 1 in samples containing 0.1% of peanut.