15 resultados para Fuzzy rules

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio Link Quality Estimation (LQE) is a fundamental building block for Wireless Sensor Networks, namely for a reliable deployment, resource management and routing. Existing LQEs (e.g. PRR, ETX, Fourbit, and LQI ) are based on a single link property, thus leading to inaccurate estimation. In this paper, we propose F-LQE, that estimates link quality on the basis of four link quality properties: packet delivery, asymmetry, stability, and channel quality. Each of these properties is defined in linguistic terms, the natural language of Fuzzy Logic. The overall quality of the link is specified as a fuzzy rule whose evaluation returns the membership of the link in the fuzzy subset of good links. Values of the membership function are smoothed using EWMA filter to improve stability. An extensive experimental analysis shows that F-LQE outperforms existing estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the preliminary work of an approach where Fuzzy Boolean Nets (FBN) are being used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil chemical physical properties. FBN were chosen due to the scarcity on available quantitative data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0–3, 3–6 and 6–18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the modifications that occurred in some forest soil properties after a prescribed fire. The research focused on the alterations of soil pH, soil moisture and soil organic matter content during a two-year span, from 2008 to 2009. The study site is located in Anjos, Vieira do Minho municipality, a forest site that has suffered from recurrent wildfires for several decades. Furze (Ulex, sp.), broom (Cytisus, sp.), gorse (Chamaespartum tridentatum) and a very few disperse adult pine (Pinus sylvestris) are the predominant vegetation type in the study area. The average height of this shrub vegetation is around 1.5 m. The prescribed fire was conducted by the National Forestry Authority (AFN) in November 2008. Fuzzy Boolean Nets (FBN) were used to evaluate the alteration in soil parameters when compared with adjacent spots where: i) no fire occurrence was registered since 1998; ii) fire occurrence was registered in 2008; and iii) vegetation pruning by mechanical cut was done in Spring six months prior to the prescribed fire event. Results suggest that in the particular case of the studied site, Anjos, the observed soil properties alterations cannot be related with the prescribed fire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portuguese northern forests are often and severely affected by wildfires during the summer season. Some preventive actions, such as prescribed (or controlled) burnings and clear-cut logging, are often used as a measure to reduce the occurrences of wildfires. In the particular case of Serra da Cabreira forest, due to extremely difficulties in operational field work, the prescribed (or controlled) burning technique is the the most common preventive action used to reduce the existing fuel load amount. This paper focuses on a Fuzzy Boolean Nets analysis of the changes in some forest soil properties, namely pH, moisture and organic matter content, after a controlled fire, and on the difficulties found during the sampling process and how they were overcome. The monitoring process was conducted during a three-month period in Anjos, Vieira do Minho, Portugal, an area located in a contact zone between a two-mica coarse-grained porphyritic granite and a biotite with plagioclase granite. The sampling sites were located in a spot dominated by quartzphyllite with quartz veins whose bedrock is partially altered and covered by slightly thick humus, which maintains low undergrowth vegetation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.