16 resultados para Fuzzy Inference Systems
em Instituto Politécnico do Porto, Portugal
Resumo:
A satisfação das necessidades energéticas mundiais, cada vez mais exigentes, bem como a necessidade urgente de procurar caminhos que permitam usufruir de energia, da forma menos poluente possível, levam à necessidade de serem explorados caminhos que permitam cumprir estes pressupostos. A escolha da utilização das energias renováveis na produção de energia, torna-se cada vez mais interessante, quer do ponto de vista ambiental quer económico. O fundamento da lógica difusa está associado à recolha de informações vagas, que são no fundo uma linguagem falada por seres humanos, possibilitando a passagem deste tipo de linguagem para formato numérico, permitindo assim uma manipulação computacional. Elementos climáticos como o sol e o vento, podem ser descritos em forma de variáveis linguísticas, como é o caso de vento forte, temperatura baixa, irradiação fraca, etc. Isto faz com que a aplicação de um controlo a partir destes fenómenos, justifique ser realizado com recurso a sistemas de inferência difusa. Para a realização do trabalho proposto, foram consumados estudos relativos às energias renováveis, com particular enfoque na solar e na eólica. Também foi realizado um estudo dos conceitos pertencentes à lógica difusa e a sistemas de inferência difusa com o objetivo de perceber os diversos parâmetros constituintes desta matéria. Foi realizado o estudo e desenvolvimento de um sistema de aquisição de dados, bem como do controlador difuso que é o busílis do trabalho descrito neste relatório. Para tal, o trabalho foi efetuado com o recurso ao software MATLAB, a partir do qual foram desenvolvidas aplicações que possibilitaram a obtenção de dados climáticos, com vista à sua utilização na toolbox Fuzzy Logic a qual foi utilizada para o desenvolvimento de todo o algoritmo de controlo. Com a possibilidade de aquisição de dados concluída e das variáveis que iriam ser necessárias definidas, foi implementado o controlador difuso que foi sendo sintonizado ao longo do trabalho por forma a garantir os melhores resultados possíveis. Com o recurso à ferramenta Guide, também do MATLAB, foi criada a interface do sistema com o utilizador, sendo possível a averiguação da energia a ser produzida, bem como das contribuições de cada uma das fontes de energia renováveis para a obtenção dessa mesma energia. Por último, foi feita uma análise de resultados através da comparação entre os valores reais esperados e os valores obtidos pelo controlador difuso, bem como assinaladas conclusões e possibilidades de desenvolvimentos futuros deste trabalho.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Este trabalho de pesquisa e desenvolvimento tem como fundamento principal o Conceito de Controlo por Lógica Difusa. Utilizando as ferramentas do software Matlab, foi possível desenvolver um controlador com base na inferência difusa que permitisse controlar qualquer tipo de sistema físico real, independentemente das suas características. O Controlo Lógico Difuso, do inglês “Fuzzy Control”, é um tipo de controlo muito particular, pois permite o uso simultâneo de dados numéricos com variáveis linguísticas que tem por base o conhecimento heurístico dos sistemas a controlar. Desta forma, consegue-se quantificar, por exemplo, se um copo está “meio cheio” ou “meio vazio”, se uma pessoa é “alta” ou “baixa”, se está “frio” ou “muito frio”. O controlo PID é, sem dúvida alguma, o controlador mais amplamente utilizado no controlo de sistemas. Devido à sua simplicidade de construção, aos reduzidos custos de aplicação e manutenção e aos resultados que se obtêm, este controlador torna-se a primeira opção quando se pretende implementar uma malha de controlo num determinado sistema. Caracterizado por três parâmetros de ajuste, a saber componente proporcional, integral e derivativa, as três em conjunto permitem uma sintonia eficaz de qualquer tipo de sistema. De forma a automatizar o processo de sintonia de controladores e, aproveitando o que melhor oferece o Controlo Difuso e o Controlo PID, agrupou-se os dois controladores, onde em conjunto, como poderemos constatar mais adiante, foram obtidos resultados que vão de encontro com os objectivos traçados. Com o auxílio do simulink do Matlab, foi desenvolvido o diagrama de blocos do sistema de controlo, onde o controlador difuso tem a tarefa de supervisionar a resposta do controlador PID, corrigindo-a ao longo do tempo de simulação. O controlador desenvolvido é denominado por Controlador FuzzyPID. Durante o desenvolvimento prático do trabalho, foi simulada a resposta de diversos sistemas à entrada em degrau unitário. Os sistemas estudados são na sua maioria sistemas físicos reais, que representam sistemas mecânicos, térmicos, pneumáticos, eléctricos, etc., e que podem ser facilmente descritos por funções de transferência de primeira, segunda e de ordem superior, com e sem atraso.
Resumo:
Penalty and Barrier methods are normally used to solve Nonlinear Optimization Problems constrained problems. The problems appear in areas such as engineering and are often characterised by the fact that involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. This means that optimization methods based on derivatives cannot net used. A Java based API was implemented, including only derivative-free optimizationmethods, to solve both constrained and unconstrained problems, which includes Penalty and Barriers methods. In this work a new penalty function, based on Fuzzy Logic, is presented. This function imposes a progressive penalization to solutions that violate the constraints. This means that the function imposes a low penalization when the violation of the constraints is low and a heavy penalisation when the violation is high. The value of the penalization is not known in beforehand, it is the outcome of a fuzzy inference engine. Numerical results comparing the proposed function with two of the classic penalty/barrier functions are presented. Regarding the presented results one can conclude that the prosed penalty function besides being very robust also exhibits a very good performance.
Resumo:
Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.
Resumo:
This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
Indoor location systems cannot rely on technologies such as GPS (Global Positioning System) to determine the position of a mobile terminal, because its signals are blocked by obstacles such as walls, ceilings, roofs, etc. In such environments. The use of alternative techniques, such as the use of wireless networks, should be considered. The location estimation is made by measuring and analysing one of the parameters of the wireless signal, usually the received power. One of the techniques used to estimate the locations using wireless networks is fingerprinting. This technique comprises two phases: in the first phase data is collected from the scenario and stored in a database; the second phase consists in determining the location of the mobile node by comparing the data collected from the wireless transceiver with the data previously stored in the database. In this paper an approach for localisation using fingerprinting based on Fuzzy Logic and pattern searching is presented. The performance of the proposed approach is compared with the performance of classic methods, and it presents an improvement between 10.24% and 49.43%, depending on the mobile node and the Fuzzy Logic parameters.ł
Resumo:
The Portuguese northern forests are often and severely affected by wildfires during the Summer season. These occurrences significantly affect and negatively impact all ecosystems, namely soil, fauna and flora. In order to reduce the occurrences of natural wildfires, some measures to control the availability of fuel mass are regularly implemented. Those preventive actions concern mainly prescribed burnings and vegetation pruning. This work reports on the impact of a prescribed burning on several forest soil properties, namely pH, soil moisture, organic matter content and iron content, by monitoring the soil self-recovery capabilities during a one year span. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, which was kept intact from prescribed burnings during a period of four years. Soil samples were collected from five plots at three different layers (0–3, 3–6 and 6–18) 1 day before prescribed fire and at regular intervals after the prescribed fire. This paper presents an approach where Fuzzy Boolean Nets (FBN) and Fuzzy reasoning are used to extract qualitative knowledge regarding the effect of prescribed fire burning on soil properties. FBN were chosen due to the scarcity on available quantitative data. The results showed that soil properties were affected by prescribed burning practice and were unable to recover their initial values after one year.