27 resultados para Functional Calculus
em Instituto Politécnico do Porto, Portugal
Resumo:
In this paper, we establish the controllability for a class of abstract impulsive mixed-type functional integro-differential equations with finite delay in a Banach space. Some sufficient conditions for controllability are obtained by using the Mönch fixed point theorem via measures of noncompactness and semigroup theory. Particularly, we do not assume the compactness of the evolution system. An example is given to illustrate the effectiveness of our results.
Resumo:
This paper presents a survey of useful, established formulas in Fractional Calculus, systematically collected for reference purposes.
Resumo:
Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.
Resumo:
During the last fifty years the area of Fractional Calculus verified a considerable progress. This paper analyzes and measures the evolution that occurred since 1966.
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.
Resumo:
This survey intends to report some of the major documents and events in the area of fractional calculus that took place since 1974 up to the present date.
Resumo:
This chapter considers the particle swarm optimization algorithm as a system, whose dynamics is studied from the point of view of fractional calculus. In this study some initial swarm particles are randomly changed, for the system stimulation, and its response is compared with a non-perturbed reference response. The perturbation effect in the PSO evolution is observed in the perspective of the fitness time behaviour of the best particle. The dynamics is represented through the median of a sample of experiments, while adopting the Fourier analysis for describing the phenomena. The influence upon the global dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the system is subjected to random perturbations, and its modelling with fractional order transfer functions.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. It has been recognized the advantageous use of this mathematical tool in the modelling and control of many dynamical systems. Having these ideas in mind, this paper discusses a FC perspective in the study of the dynamics and control of several systems. The paper investigates the use of FC in the fields of controller tuning, legged robots, electrical systems and digital circuit synthesis.
Resumo:
Fractional Calculus FC goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of system dynamics and control. In this perspective, this paper investigates the use of FC in the fields of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.
Resumo:
The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects of the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.
Resumo:
In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.
Resumo:
Cosmic microwave background (CMB) radiation is the imprint from an early stage of the Universe and investigation of its properties is crucial for understanding the fundamental laws governing the structure and evolution of the Universe. Measurements of the CMB anisotropies are decisive to cosmology, since any cosmological model must explain it. The brightness, strongest at the microwave frequencies, is almost uniform in all directions, but tiny variations reveal a spatial pattern of small anisotropies. Active research is being developed seeking better interpretations of the phenomenon. This paper analyses the recent data in the perspective of fractional calculus. By taking advantage of the inherent memory of fractional operators some hidden properties are captured and described.