6 resultados para Finite volumes
em Instituto Politécnico do Porto, Portugal
Resumo:
Introdução. O sistema de distribuição em dose unitária tem por base a dispensa de medicação na dose prescrita, de forma individualizada. Este sistema de distribuição é vantajoso, pois torna a dispensa de medicamentos individualizada e dirigida ao doente, e diminui o stock existente nas enfermarias. Contudo, assume também desvantagens, sendo crucial que todos os medicamentos e produtos farmacêuticos estejam disponíveis e individualizados, sempre que necessários. De modo a assegurar uma adequada reposição de stocks no sector de Dose Unitária, o Centro Hospitalar de São João, EPE (CHSJ, EPE) implementou o sistema Kanban® como método de reposição. Assim, foi desenvolvido um conjunto de cartões-Kanban®, existindo diferentes cores que caracterizam diferentes grupos de produtos: [1] azul, produtos que necessitam de manipulação; [2] verde, produtos que se encontram na sua apresentação final; [3] roxo, produtos de grande volume que necessitam de manipulação. Deste modo, quando o stock de um produto está a terminar, compete aos Técnicos de Farmácia colocar o Kanban® no Quadro de Reposição, para que seja iniciado o processo de reposição. Face a algumas limitações associadas ao tamanho dos cartões anteriormente implementados, este trabalho visa desenvolver e implementar o Kanban® verde, através de um sistema de dupla identificação, utilizando duas etiquetas identificativas: uma verde, removível, que é colocada no Quadro de Reposição quando o stock termina, e uma amarela, fixa, alertando para a necessidade de repor o produto em causa. Material e Métodos. Efectuou-se um estudo do tipo investigação-acção no qual foram analisados todos os medicamentos e produtos farmacêuticos que não sofrem qualquer processo de manipulação entre a chegada aos Serviços Farmacêuticos e o seu envio para os Serviços Clínicos. Resultados. Da implementação deste sistema de dupla identificação, com base no modelo de rótulos pré-definido na instituição, resultaram um conjunto de rótulos identificativos dos vários produtos. Discussão/Conclusões. O stock do sector de Dose Unitária do CHSJ, EPE encontra-se organizado de duas formas: os medicamentos que necessitam de manipulação, que atendendo ao seu pequeno volume estão armazenados em gavetas, enquanto os restantes, pelo seu maior volume, são armazenados em estantes, com a devida identificação. Considerando que os novos Kanban® têm por base substituir os já existentes, acreditamos que alguma dificuldade existente será melhorada. A diferença na coloração das etiquetas designativas alertará para a necessidade de reposição, situação que poderia passar despercebida. Face à falta de literatura publicada, não existe qualquer informação que sustente os resultados esperados, porém acreditamos que este estudo pode servir de base ao desenvolvimento deste sistema noutras instituições, e como experiência do sucesso/insucesso da utilização do Sistema Kanban
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.