2 resultados para Feathers.
em Instituto Politécnico do Porto, Portugal
Resumo:
This research work has been focused in the study of gallinaceous feathers, a waste that may be valorised as sorbent, to remove the Dark Blue Astrazon 2RN (DBA) from Dystar. This study was focused on the following aspects: optimization of experimental conditions through factorial design methodology, kinetic studies into a continuous stirred tank adsorber (at pH 7 and 20ºC), equilibrium isotherms (at pH 5, 7 and 9 at 20 and 45ºC) and column studies (at 20ºC, at pH 5, 7 and 9). In order to evaluate the influence of the presence of other components in the sorption of the dyestuff, all experiments were performed both for the dyestuff in aqueous solution and in real textile effluent. The pseudo-first and pseudo-second order kinetic models were fitted to the experimental data, being the latter the best fit for the aqueous solution of dyestuff. For the real effluent both models fit the experimental results and there is no statistical difference between them. The Central Composite Design (CCD) was used to evaluate the effects of temperature (15 - 45ºC) and pH (5 - 9) over the sorption in aqueous solution. The influence of pH was more significant than temperature. The optimal conditions selected were 45ºC and pH 9. Both Langmuir and Freundlich models could fit the equilibrium data. In the concentration range studied, the highest sorbent capacity was obtained for the optimal conditions in aqueous solution, which corresponds to a maximum capacity of 47± 4 mg g-1. The Yoon-Nelson, Thomas and Yan’s models fitted well the column experimental data. The highest breakthrough time for 50% removal, 170 min, was obtained at pH 9 in aqueous solution. The presence of the dyeing agents in the real wastewater decreased the sorption of the dyestuff mostly for pH 9, which is the optimal pH. The effect of pH is less pronounced in the real effluent than in aqueous solution. This work shows that feathers can be used as sorbent in the treatment of textile wastewaters containing DBA.
Resumo:
Gallinaceous feathers are an abundant solid waste from the poultry processing industries, which poses disposal problems. A kinetic study dealing with the adsorption process of wool reactive dye, Yellow Lanasol 4G (CI Reactive Yellow 39), on gallinaceous (Gallus gallus, Cobb 500) feathers was carried out. The main research goals of this work were to evaluate the viability of using this waste as adsorbent and to study the kinetics of the adsorption process, using a synthetic effluent. The characterization of feathers was performed by scanning electron microscopy, mercury porosimetry and B.E.T. method. The study of several factors (stirring, particles size, initial dye concentration and temperature) showed their influence over the adsorption process. An adapted version of the Schumckler and Goldstein´s unreacted core model fitted the experimental data. The best fit was obtained when the rate-limiting step was the diffusion through the reacted layer, which was expected considering the size of the dyestuff molecules. The comparison with the granular activated carbon (GAC) Sutcliffe GAC 10-30 indicate that in spite of the high adsorption capacities shown by feathers the GAC presented higher values, the values obtained were respectively 150 and 219 mg g-1, for an initial concentration of 500 mg L-1. The results obtained might open future perspectives both to the valorization of feathers and to the economical treatment of textile wastewaters.