19 resultados para Failure Scenarios
em Instituto Politécnico do Porto, Portugal
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Desde o seu aparecimento, a Internet teve um desenvolvimento e uma taxa de crescimento quase exponencial. Os mercados de comércio electrónico têm vindo a acompanhar esta tendência de crescimento, tornando-se cada vez mais comuns e populares entre comerciantes ou compradores/vendedores de ocasião. A par deste crescimento também foi aumentando a complexidade e sofisticação dos sistemas responsáveis por promover os diferentes mercados. No seguimento desta evolução surgiram os Agentes Inteligentes devido à sua capacidade de encontrar e escolher, de uma forma relativamente eficiente, o melhor negócio, tendo por base as propostas e restrições existentes. Desde a primeira aplicação dos Agentes Inteligentes aos mercados de comércio electrónico que os investigadores desta área, têm tentado sempre auto-superar-se arranjando modelos de Agentes Inteligentes melhores e mais eficientes. Uma das técnicas usadas, para a tentativa de obtenção deste objectivo, é a transferência dos comportamentos Humanos, no que toca a negociação e decisão, para estes mesmos Agentes Inteligentes. O objectivo desta dissertação é averiguar se os Modelos de Avaliação de Credibilidade e Reputação são uma adição útil ao processo de negociação dos Agente Inteligentes. O objectivo geral dos modelos deste tipo é minimizar as situações de fraude ou incumprimento sistemático dos acordos realizados aquando do processo de negociação. Neste contexto, foi proposto um Modelo de Avaliação de Credibilidade e Reputação aplicável aos mercados de comércio electrónico actuais e que consigam dar uma resposta adequada o seu elevado nível de exigência. Além deste modelo proposto também foi desenvolvido um simulador Multi-Agente com a capacidade de simular vários cenários e permitir, desta forma, comprovar a aplicabilidade do modelo proposto. Por último, foram realizadas várias experiências sobre o simulador desenvolvido, de forma a ser possível retirar algumas conclusões para o presente trabalho. Sendo a conclusão mais importante a verificação/validação de que a utilização de mecanismos de credibilidade e reputação são uma mais-valia para os mercado de comércio electrónico.
Resumo:
SMM09 Silesian Moodle Moot Conference 2009 12 - 13 November, Ostrava Sixth annual conference
Resumo:
Learnin management systems have gained an increasing role in the context of Higher Education Institutions as essential tools to support learning...
Resumo:
Proceedings of EULEARN09 - Intenational Conference and New Learning Technologies, Barcelona, Spain, 6-8 July
Resumo:
OBJECTIVE: Bacillus Calmette-Guérin (BCG) immunotherapy is the gold standard treatment for superficial bladder tumors with intermediate/high risk of recurrence or progression. However, approximately 30% of patients fail to respond to the treatment. Effective BCG therapy needs precise activation of the type 1 helper cells immune pathway. Tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype and may directly interfere with the BCG-induced antitumor immune response. Thus, we aim to clarify the influence of TAMs, in particular of the M2 phenotype in stroma and tumor areas, in BCG treatment outcome. PATIENTS AND METHODS: The study included 99 patients with bladder cancer treated with BCG. Tumors resected before treatment were evaluated using immunohistochemistry for CD68 and CD163 antigens, which identify a lineage macrophage marker and a M2-polarized specific cell surface receptor, respectively. CD68+ and CD163+ macrophages were evaluated within the stroma and tumor areas, and high density of infiltrating cells spots were selected for counting. Hypoxia, an event known to modulate macrophage phenotype, was also assessed through hypoxia induced factor (HIF)-1α expression. RESULTS: Patients in whom BCG failed had high stroma-predominant CD163+ macrophage counts (high stroma but low tumor CD163+ macrophages counts) when compared with the ones with a successful treatment (71% vs. 47%, P = 0.017). Furthermore, patients presenting this phenotype showed decreased recurrence-free survival (log rank, P = 0.008) and a clear 2-fold increased risk of BCG treatment failure was observed in univariate analysis (hazard ratio = 2.343; 95% CI: 1.197-4.587; P = 0.013). Even when adjusted for potential confounders, such as age and therapeutic scheme, multivariate analysis revealed 2.6-fold increased risk of recurrence (hazard ratio = 2.627; 95% CI: 1.340-5.150; P = 0.005). High stroma-predominant CD163+ macrophage counts were also associated with low expression of HIF-1α in tumor areas, whereas high counts of CD163+ in the tumor presented high expression of HIF-1α in tumor nests. CONCLUSIONS: TAMs evaluation using CD163 is a good indicator of BCG treatment failure. Moreover, elevated infiltration of CD163+ macrophages, predominantly in stroma areas but not in the tumor, may be a useful indicator of BCG treatment outcome, possibly owing to its immunosuppressive phenotype.
Resumo:
Mestrado em Engenharia Civil - Ramo Tecnologia e gestão das Construções
Resumo:
Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.
Resumo:
Recent studies of mobile Web trends show the continued explosion of mobile-friend content. However, the wide number and heterogeneity of mobile devices poses several challenges for Web programmers, who want automatic delivery of context and adaptation of the content to mobile devices. Hence, the device detection phase assumes an important role in this process. In this chapter, the authors compare the most used approaches for mobile device detection. Based on this study, they present an architecture for detecting and delivering uniform m-Learning content to students in a Higher School. The authors focus mainly on the XML device capabilities repository and on the REST API Web Service for dealing with device data. In the former, the authors detail the respective capabilities schema and present a new caching approach. In the latter, they present an extension of the current API for dealing with it. Finally, the authors validate their approach by presenting the overall data and statistics collected through the Google Analytics service, in order to better understand the adherence to the mobile Web interface, its evolution over time, and the main weaknesses.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
This paper presents the first phase of the redevelopment of the Electric Vehicle Scenario Simulator (EVeSSi) tool. A new methodology to generate traffic demand scenarios for the Simulation of Urban MObility (SUMO) tool for urban traffic simulation is described. This methodology is based on a Portugal census database to generate a synthetic population for a given area under study. A realistic case study of a Portuguese city, Vila Real, is assessed. For this area the road network was created along with a synthetic population and public transport. The traffic results were obtained and an electric buses fleet was evaluated assuming that the actual fleet would be replaced in a near future. The energy requirements to charge the electric fleet overnight were estimated in order to evaluate the impacts that it would cause in the local electricity network.
Resumo:
This paper presents the Realistic Scenarios Generator (RealScen), a tool that processes data from real electricity markets to generate realistic scenarios that enable the modeling of electricity market players’ characteristics and strategic behavior. The proposed tool provides significant advantages to the decision making process in an electricity market environment, especially when coupled with a multi-agent electricity markets simulator. The generation of realistic scenarios is performed using mechanisms for intelligent data analysis, which are based on artificial intelligence and data mining algorithms. These techniques allow the study of realistic scenarios, adapted to the existing markets, and improve the representation of market entities as software agents, enabling a detailed modeling of their profiles and strategies. This work contributes significantly to the understanding of the interactions between the entities acting in electricity markets by increasing the capability and realism of market simulations.
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação do Mestre Armindo Licínio da Silva Macedo