5 resultados para FUSION PROTEINS
em Instituto Politécnico do Porto, Portugal
Resumo:
Knowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables, nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA.
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
Nowadays there is an increase of location-aware mobile applications. However, these applications only retrieve location with a mobile device's GPS chip. This means that in indoor or in more dense environments these applications don't work properly. To provide location information everywhere a pedestrian Inertial Navigation System (INS) is typically used, but these systems can have a large estimation error since, in order to turn the system wearable, they use low-cost and low-power sensors. In this work a pedestrian INS is proposed, where force sensors were included to combine with the accelerometer data in order to have a better detection of the stance phase of the human gait cycle, which leads to improvements in location estimation. Besides sensor fusion an information fusion architecture is proposed, based on the information from GPS and several inertial units placed on the pedestrian body, that will be used to learn the pedestrian gait behavior to correct, in real-time, the inertial sensors errors, thus improving location estimation.
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.