6 resultados para Extrinsic reward
em Instituto Politécnico do Porto, Portugal
Resumo:
We examine volunteer satisfaction with HRM practices, namely recruitment, training and reward in NPOs and attitudes regarding the appropriateness of these practices. The participants in this study are 76 volunteers affiliated with four different NPOs, who work in hospitals and have direct contact with patients and their families. Analysing aggregate results we show that volunteers are more satisfied with training, and consider the training strategies to be very appropriate. After identifying differences between organisations we discover that in some organisations volunteers are satisfied with rewards but they have negative attitudes regarding the appropriateness of the recognition strategies. We also identify the volunteers who are the most and the least satisfied.
Resumo:
In embedded systems, the timing behaviour of the control mechanisms are sometimes of critical importance for the operational safety. These high criticality systems require strict compliance with the offline predicted task execution time. The execution of a task when subject to preemption may vary significantly in comparison to its non-preemptive execution. Hence, when preemptive scheduling is required to operate the workload, preemption delay estimation is of paramount importance. In this paper a preemption delay estimation method for floating non-preemptive scheduling policies is presented. This work builds on [1], extending the model and optimising it considerably. The preemption delay function is subject to a major tightness improvement, considering the WCET analysis context. Moreover more information is provided as well in the form of an extrinsic cache misses function, which enables the method to provide a solution in situations where the non-preemptive regions sizes are small. Finally experimental results from the implementation of the proposed solutions in Heptane are provided for real benchmarks which validate the significance of this work.
Resumo:
Dissertação apresentada à Associação de Politécnicos do Norte para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientação: Prof. Doutor Jorge Ferreira Dias de Figueiredo Co-Orientação: Mestre Luís Francisco de Oliveira Marques Metello
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
Oceans - San Diego, 2013
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.