10 resultados para Export-oriented industrialization
em Instituto Politécnico do Porto, Portugal
Resumo:
Understanding the determinants of international performance, and in particular, export performance is key for the success of international companies. Research in this area focuses mainly on how resources and capabilities allow companies to gain competitive advantage and superior performance in external markets. Building on the Resource-Based View (RBV) and the Dynamic Capabilities Approach (DCA), this study aims at analysing the effect of intangible resources and capabilities on export performance. Specifically, this study focuses on the proposition that entrepreneurial orientation potentiates the attraction of intangible resources, namely relational and informational resources. Moreover, we propose that these resources impact export performance both directly and indirectly through dynamic capabilities.
Resumo:
Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.
Resumo:
The corner stone of the interoperability of eLearning systems is the standard definition of learning objects. Nevertheless, for some domains this standard is insufficient to fully describe all the assets, especially when they are used as input for other eLearning services. On the other hand, a standard definition of learning objects in not enough to ensure interoperability among eLearning systems; they must also use a standard API to exchange learning objects. This paper presents the design and implementation of a service oriented repository of learning objects called crimsonHex. This repository is fully compliant with the existing interoperability standards and supports new definitions of learning objects for specialized domains. We illustrate this feature with the definition of programming problems as learning objects and its validation by the repository. This repository is also prepared to store usage data on learning objects to tailor the presentation order and adapt it to learner profiles.
Resumo:
The LMS plays an indisputable role in the majority of the eLearning environments. This eLearning system type is often used for presenting, solving and grading simple exercises. However, exercises from complex domains, such as computer programming, require heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. This work presents a standard approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach use a pivot component embedded in the LMS with two roles: provide an exercise resolution environment and coordinate the communication between the LMS and other systems exposing their functions as web services. The integration of the pivot component with the LMS relies on the Learning Tools Interoperability. The validation of this approach is made through the integration of the component with LMSs from two vendors.
Resumo:
TiO2 films have been deposited on ITO substrates by dc reactive magnetron sputtering technique. It has been found that the sputtering pressure is a very important parameter for the structure of the deposited TiO2 films. When the pressure is lower than 1 Pa, the deposited has a dense structure and shows a preferred orientation along the [101] direction. However, the nanorod structure has been obtained as the sputtering pressure is higher than 1 Pa. These nanorods structure TiO2 film shows a preferred orientation along the [110] direction. The x-ray diffraction and the Raman scattering measurements show both the dense and the nanostructure TiO2 films have only an anatase phase, no other phase has been obtained. The results of the SEM show that these TiO2 nanorods are perpendicular to the ITO substrate. The TEM measurement shows that the nanorods have a very rough surface. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorod films prepared at different sputtering pressures as photoelectrode. And the effect of the sputtering pressure on the properties of the photoelectric conversion of the DSSCs has been studied.
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
Prostate Specific Antigen (PSA) is the biomarker of choice for screening prostate cancer throughout the population, with PSA values above 10 ng/mL pointing out a high probability of associated cancer1. According to the most recent World Health Organization (WHO) data, prostate cancer is the commonest form of cancer in men in Europe2. Early detection of prostate cancer is thus very important and is currently made by screening PSA in men over 45 years old, combined with other alterations in serum and urine parameters. PSA is a glycoprotein with a molecular mass of approximately 32 kDa consisting of one polypeptide chain, which is produced by the secretory epithelium of human prostate. Currently, the standard methods available for PSA screening are immunoassays like Enzyme-Linked Immunoabsorbent Assay (ELISA). These methods are highly sensitive and specific for the detection of PSA, but they require expensive laboratory facilities and high qualify personal resources. Other highly sensitive and specific methods for the detection of PSA have also become available and are in its majority immunobiosensors1,3-5, relying on antibodies. Less expensive methods producing quicker responses are thus needed, which may be achieved by synthesizing artificial antibodies by means of molecular imprinting techniques. These should also be coupled to simple and low cost devices, such as those of the potentiometric kind, one approach that has been proven successful6. Potentiometric sensors offer the advantage of selectivity and portability for use in point-of-care and have been widely recognized as potential analytical tools in this field. The inherent method is simple, precise, accurate and inexpensive regarding reagent consumption and equipment involved. Thus, this work proposes a new plastic antibody for PSA, designed over the surface of graphene layers extracted from graphite. Charged monomers were used to enable an oriented tailoring of the PSA rebinding sites. Uncharged monomers were used as control. These materials were used as ionophores in conventional solid-contact graphite electrodes. The obtained results showed that the imprinted materials displayed a selective response to PSA. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8X10-11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed smaller sensitivity, with average slopes of -24.8 mV/decade. The best sensors were successfully applied to the analysis of serum samples, with percentage recoveries of 106.5% and relatives errors of 6.5%.
Resumo:
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
This study aims at investigating the influence that entrepreneurial orientation has on export performance of Portuguese footwear small and mediumenterprises (SMEs). Therefore, a quantitative methodological approach was used, conducting a descriptive, exploratory and transversal empirical study, having applied a questionnaire to a sample of Portuguese companies exporting footwear. The research results suggest that entrepreneurial orientation enhances export performance in the analysed SMEs, particularly innovation and proactiveness, through the amount of funds invested, human resources dedicated to this activity, number of new products or services introduced in the market and frequent change in product lines or services and materialization of a long-term perspective, which is accompanied by innovative activities or new businesses. Therefore, the findings sustain the necessity to invest in entrepreneurial orientation as a strategic determinant, which contributes to the growth of small firms in foreignmarkets. Finally, the main limitation of this study is related to the sample size, since it was difficult to find companies willing to collaborate with this kind of research.
Resumo:
In order to increase the efficiency in the use of energy resources, the electrical grid is slowly evolving into a smart(er) grid that allows users' production and storage of energy, automatic and remote control of appliances, energy exchange between users, and in general optimizations over how the energy is managed and consumed. One of the main innovations of the smart grid is its organization over an energy plane that involves the actual exchange of energy, and a data plane that regards the Information and Communication Technology (ICT) infrastructure used for the management of the grid's data. In the particular case of the data plane, the exchange of large quantities of data can be facilitated by a middleware based on a messaging bus. Existing messaging buses follow different data management paradigms (e.g.: request/response, publish/subscribe, data-oriented messaging) and thus satisfy smart grids' communication requirements at different extents. This work contributes to the state of the art by identifying, in existing standards and architectures, common requirements that impact in the messaging system of a data plane for the smart grid. The paper analyzes existing messaging bus paradigms that can be used as a basis for the ICT infrastructure of a smart grid and discusses how these can satisfy smart grids' requirements.