4 resultados para Error Correction Coding, Error Resilience, MPEG-4, Video Coding
em Instituto Politécnico do Porto, Portugal
Resumo:
Personalised video can be achieved by inserting objects into a video play-out according to the viewer's profile. Content which has been authored and produced for general broadcast can take on additional commercial service features when personalised either for individual viewers or for groups of viewers participating in entertainment, training, gaming or informational activities. Although several scenarios and use-cases can be envisaged, we are focussed on the application of personalised product placement. Targeted advertising and product placement are currently garnering intense interest in the commercial networked media industries. Personalisation of product placement is a relevant and timely service for next generation online marketing and advertising and for many other revenue generating interactive services. This paper discusses the acquisition and insertion of media objects into a TV video play-out stream where the objects are determined by the profile of the viewer. The technology is based on MPEG-4 standards using object based video and MPEG-7 for metadata. No proprietary technology or protocol is proposed. To trade the objects into the video play-out, a Software-as-a-Service brokerage platform based on intelligent agent technology is adopted. Agencies, libraries and service providers are represented in a commercial negotiation to facilitate the contractual selection and usage of objects to be inserted into the video play-out.
Resumo:
This paper describes how MPEG-4 object based video (obv) can be used to allow selected objects to be inserted into the play-out stream to a specific user based on a profile derived for that user. The application scenario described here is for personalized product placement, and considers the value of this application in the current and evolving commercial media distribution market given the huge emphasis media distributors are currently placing on targeted advertising. This level of application of video content requires a sophisticated content description and metadata system (e.g., MPEG-7). The scenario considers the requirement for global libraries to provide the objects to be inserted into the streams. The paper then considers the commercial trading of objects between the libraries, video service providers, advertising agencies and other parties involved in the service. Consequently a brokerage of video objects is proposed based on negotiation and trading using intelligent agents representing the various parties. The proposed Media Brokerage Platform is a multi-agent system structured in two layers. In the top layer, there is a collection of coarse grain agents representing the real world players – the providers and deliverers of media contents and the market regulator profiler – and, in the bottom layer, there is a set of finer grain agents constituting the marketplace – the delegate agents and the market agent. For knowledge representation (domain, strategic and negotiation protocols) we propose a Semantic Web approach based on ontologies. The media components contents should be represented in MPEG-7 and the metadata describing the objects to be traded should follow a specific ontology. The top layer content providers and deliverers are modelled by intelligent autonomous agents that express their will to transact – buy or sell – media components by registering at a service registry. The market regulator profiler creates, according to the selected profile, a market agent, which, in turn, checks the service registry for potential trading partners for a given component and invites them for the marketplace. The subsequent negotiation and actual transaction is performed by delegate agents in accordance with their profiles and the predefined rules of the market.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
The use of bit error models in communication simulation has been widely studied. In this technical report we present three models: the Independent Channel Model; the Gilbert-Elliot Model and the Burst-Error Periodic Model.