6 resultados para Environmental exposure

em Instituto Politécnico do Porto, Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The post-surgical period is often critical for infection acquisition. The combination of patient injury and environmental exposure through breached skin add risk to pre-existing conditions such as drug or depressed immunity. Several factors such as the period of hospital staying after surgery, base disease, age, immune system condition, hygiene policies, careless prophylactic drug administration and physical conditions of the healthcare centre may contribute to the acquisition of a nosocomial infection. A purulent wound can become complicated whenever antimicrobial therapy becomes compromised. In this pilot study, we analysed Enterobacteriaceae strains, the most significant gram-negative rods that may occur in post-surgical skin and soft tissue infections (SSTI) presenting reduced β-lactam susceptibility and those presenting extended-spectrum β-lactamases (ESBL). There is little information in our country regarding the relationship between β-lactam susceptibility, ESBL and development of resistant strains of microorganisms in SSTI. Our main results indicate Escherichia coli and Klebsiella spp. are among the most frequent enterobacteria (46% and 30% respectively) with ESBL production in 72% of Enterobacteriaceae isolates from SSTI. Moreover, coinfection occurred extensively, mainly with Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (18% and 13%, respectively). These results suggest future research to explore if and how these associations are involved in the development of antibiotic resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally occurring radioactive materials (NORM) under certain conditions can reach hazardous radiological levels contributing to an additional exposure dose to ionizing radiation. Most environmental concerns are associated with uranium mining and milling sites, but the same concerns should be addressed to natural near surface occurrences of uranium as well as man-made sources such as technologically enhanced naturally occurring radioactive materials (TENORM) resulting from phosphates industry, ceramic industry and energy production activities, in particular from coal-fired power plants which is one of the major sources of increased exposure to man from enhanced naturally occurring materials. This work describes the methodology developed to assess the environmental radiation by in situ gamma spectrometry in the vicinity of a Portuguese coal fired power plant. The current investigation is part of a research project that is undergoing in the vicinity of Sines Coal-Fired Power Plant (south of Portugal) until the end of 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospitals are considered as a special and important type of indoor public place where air quality has significant impacts on potential health outcomes. Information on indoor air quality of these environments, concerning exposures to particulate matter (PM) and related toxicity, is limited though. This work aims to evaluate risks associated with inhalation exposure to ten toxic metals and chlorine (As, Ni, Cr, Cd, Pb, Mn, Se, Ba, Al, Si, and Cl) in coarse (PM2.5–10) and fine (PM2.5) particles in a Portuguese hospital in comparison with studies representative of other countries. Samples were collected during 1 month in one urban hospital; elemental PM characterization was determined by proton-induced X-ray emission. Noncarcinogenic and carcinogenic risks were assessed according to the methodology provided by the United States Environmental Protection Agency (USEPA; Region III Risk-Based Concentration Table) for three different age categories of hospital personnel (adults, >20, and <65 years) and patients (considering nine different age groups, i.e., children of 1–3 years to seniors of >65 years). The estimated noncarcinogenic risks due to occupational inhalation exposure to PM2.5-bound metals ranged from 5.88×10−6 for Se (adults, 55–64 years) to 9.35×10−1 for As (adults, 20–24 years) with total noncarcinogenic risks (sum of all metals) above the safe level for all three age categories. As and Cl (the latter due to its high abundances) were the most important contributors (approximately 90 %) to noncarcinogenic risks. For PM2.5–10, noncarcinogenic risks of all metals were acceptable to all age groups. Concerning carcinogenic risks, for Ni and Pb, they were negligible (<1×10−6) in both PM fractions for all age groups of hospital personnel; potential risks were observed for As and Cr with values in PM2.5 exceeding (up to 62 and 5 times, respectively) USEPA guideline across all age groups; for PM2.5–10, increased excess risks of As and Cr were observed particularly for long-term exposures (adults, 55–64 years). Total carcinogenic risks highly (up to 67 times) exceeded the recommended level for all age groups, thus clearly showing that occupational exposure to metals in fine particles pose significant risks. If the extensive working hours of hospital medical staff were considered, the respective noncarcinogenic and carcinogenic risks were increased, the latter for PM2.5 exceeding the USEPA cumulative guideline of 10−4. For adult patients, the estimated noncarcinogenic and carcinogenic risks were approximately three times higher than for personnel, with particular concerns observed for children and adolescents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human exposure to persistent organic pollutants (POPs) is a certainty, even to long banned pesticides like o,p′-dichlorodiphenyltrichloroethane (o,p′-DDT), and its metabolites p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE), and p,p′-dichlorodiphenyldichloroethane (p,p′-DDD). POPs are known to be particularly toxic and have been associated with endocrine-disrupting effects in several mammals, including humans even at very low doses. As environmental estrogens, they could play a critical role in carcinogenesis, such as in breast cancer. With the purpose of evaluating their effect on breast cancer biology, o,p′-DDT, p,p′-DDE, and p,p′-DDD (50–1000 nM) were tested on two human breast adenocarcinoma cell lines: MCF-7 expressing estrogen receptor (ER) α and MDA-MB-231 negative for ERα, regarding cell proliferation and viability in addition to their invasive potential. Cell proliferation and viability were not equally affected by these compounds. In MCF-7 cells, the compounds were able to decrease cell proliferation and viability. On the other hand, no evident response was observed in treated MDA-MB-231 cells. Concerning the invasive potential, the less invasive cell line, MCF-7, had its invasion potential significantly induced, while the more invasive cell line MDA-MB-231, had its invasion potential dramatically reduced in the presence of the tested compounds. Altogether, the results showed that these compounds were able to modulate several cancer-related processes, namely in breast cancer cell lines, and underline the relevance of POP exposure to the risk of cancer development and progression, unraveling distinct pathways of action of these compounds on tumor cell biology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal contamination of the environment is frequently associated to the presence of two or more metals. This work aimed to study the impact of a mixture of metals (Cd, Pb and Zn) on the physiology of the non-conventional yeast Pichia kudriavzevii. The incubation of yeast cells with 5 mg/l Cd, 10 mg/l Pb and 5 mg/l Zn, for 6 h, induced a loss of metabolic activity (assessed by FUN-1 staining) and proliferation capacity (evaluated by a clonogenic assay), with a small loss of membrane integrity (measured by trypan blue exclusion assay). The staining of yeast cells with calcofluor white revealed that no modification of chitin deposition pattern occurred during the exposure to metal mixture. Extending for 24 h, the exposure of yeast cells to metal mixture provoked a loss of membrane integrity, which was accompanied by the leakage of intracellular components. A marked loss of the metabolic activity and the loss of proliferation capacity were also observed. The analysis of the impact of a single metal has shown that, under the conditions studied, Pb was the metal responsible for the toxic effect observed in the metal mixture. Intracellular accumulation of Pb seems to be correlated with the metals' toxic effects observed.