10 resultados para Energy integration

em Instituto Politécnico do Porto, Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A presente dissertação tem dois objetivos, o primeiro é a realização de uma auditoria energética e avaliação da qualidade do ar às instalações de uma Piscina Municipal, permitindo a sua classificação energética, e o segundo é o estudo de propostas de melhoria que contribuam para uma melhor eficiência energética do edifício. Na análise à qualidade do ar interior os parâmetros avaliados encontravam-se todos dentro dos limites estabelecidos por lei, com exceção dos valores de COVs que em dois pontos de medição (ambos na nave) ultrapassaram os limites estabelecidos por lei. A auditoria ao edifício permitiu verificar que o caudal mínimo de água nova nas piscinas imposto por lei é cumprido pela instalação. No que diz respeito ao caudal de ar novo introduzido, este apenas é respeitado quando a unidade de tratamento de ar está a debitar 100% da sua capacidade. Quando a unidade opera a 50% da sua capacidade apresenta um défice de 5% do valor mínimo estabelecido. Relativamente às perdas energéticas associadas aos tanques de natação, estas apresentam um valor de 95,89 kW, em que 59,09 kW dizem respeito às perdas por evaporação. Foi também possível concluir que as perdas por evaporação representam cerca de 39% da energia calorifica produzida nas caldeiras. O edifício apresenta um consumo anual de eletricidade de 166 482 kWh em que 69% deste valor é provocado pelas unidades de tratamento de ar e a iluminação apresenta apenas um peso de 3%. Em relação ao gás natural consumido pelas caldeiras o seu valor anual é de 1 317 240 kWh. A simulação dinâmica do edifício permitiu concluir que este apresenta um IEE de 1 269,9 kWh/m2.ano. O rácio de classe energética (RIEE) é de 1,24 o que significa que o edifício pertence à classe energética C. As medidas estudadas para a melhoria da eficiência energética, nomeadamente integração energética com uma central de ciclo combinado, aplicação de cobertura isotérmica nas piscinas e substituição do telhado na zona da nave, mostraram-se viáveis. O estudo da possibilidade da realização de uma integração energética permitiu concluir que a poupança anual é de 9 374 € e o investimento é recuperado em menos de 1,5 anos. Relativamente à aplicação de cobertura isotérmica o investimento é de 14 000 € e é recuperado em 2 anos. A substituição do telhado na zona da nave tem um investimento de 20 500 € e a recuperação realiza-se num período de 3,5 anos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i. e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The restructuring that the energy sector has suffered in industrialized countries originated a greater complexity in market players’ interactions, and thus new problems and issues to be addressed. Decision support tools that facilitate the study and understanding of these markets become extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent system for simulating competitive electricity markets. To provide MASCEM with the capacity to recreate the electricity markets reality in the fullest possible extent, it is essential to make it able to simulate as many market models and player types as possible. This paper presents the development of the Complex Market in MASCEM. This module is fundamental to study competitive electricity markets, as it exhibits different characteristics from the already implemented market types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5–Yonsei University–Noah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.