150 resultados para Energy Consumption Management System
em Instituto Politécnico do Porto, Portugal
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
Atualmente a energia é considerada um vetor estratégico nas diversas organizações. Assim sendo, a gestão e a utilização racional da energia são consideradas instrumentos fundamentais para a redução dos consumos associados aos processos de produção do sector industrial. As ações de gestão energética não deverão ficar pela fase do projeto das instalações e dos meios de produção, mas sim acompanhar a atividade da Empresa. A gestão da energia deve ser sustentada com base na realização regular de diagnósticos energéticos às instalações consumidoras e concretizada através de planos de atuação e de investimento que apresentem como principal objetivo a promoção da eficiência energética, conduzindo assim à redução dos respetivos consumos e, consequentemente, à redução da fatura energética. Neste contexto, a utilização de ferramentas de apoio à gestão de energia promovem um consumo energético mais racional, ou seja, promovem a eficiência energética e é neste sentido que se insere este trabalho. O presente trabalho foi desenvolvido na Empresa RAR Açúcar e apresentou como principais objetivos: a reformulação do Sistema de Gestão de Consumos de Energia da Empresa, a criação de um modelo quantitativo que permitisse ao Gestor de Energia prever os consumos anuais de água, fuelóleo e eletricidade da Refinaria e a elaboração de um plano de consumos para o ano de 2014 a partir do modelo criado. A reformulação do respetivo Sistema de Gestão de Consumos resultou de um conjunto de etapas. Numa primeira fase foi necessário efetuar uma caraterização e uma análise do atual Sistema de Gestão de Consumos da Empresa, sistema composto por um conjunto de sete ficheiros de cálculo do programa Microsoft Excel©. Terminada a análise, selecionada a informação pertinente e propostas todas as melhorias a introduzir nos ficheiros, procedeu-se à reformulação do respetivo SGE, reduzindo-se o conjunto de ficheiros de cálculo para apenas dois ficheiros, um onde serão efetuados e visualizados todos os registos e outro onde serão realizados os cálculos necessários para o controlo energético da Empresa. O novo Sistema de Gestão de Consumos de Energia será implementado no início do ano de 2015. Relativamente às alterações propostas para as folhas de registos manuais, estas já foram implementadas pela Empresa. Esta aplicação prática mostrou-se bastante eficiente uma vez que permitiu grandes melhorias processuais nomeadamente, menores tempos de preenchimento das mesmas e um encurtamento das rotas efetuadas diariamente pelos operadores. Através do levantamento efetuado aos diversos contadores foi possível identificar todas as áreas onde será necessário a sua instalação e a substituição de todos os contadores avariados, permitindo deste modo uma contabilização mais precisa de todos os consumos da Empresa. Com esta reestruturação o Sistema de Gestão de Consumos tornou-se mais dinâmico, mais claro e, principalmente, mais eficiente. Para a criação do modelo de previsão de consumos da Empresa foi necessário efetuar-se um levantamento dos consumos históricos de água, eletricidade, fuelóleo e produção de açúcar de dois anos. Após este levantamento determinaram-se os consumos específicos de água, fuelóleo e eletricidade diários (para cada semana dos dois anos) e procedeu-se à caracterização destes consumos por tipo de dia. Efetuada a caracterização definiu-se para cada tipo de dia um consumo específico médio com base nos dois anos. O modelo de previsão de consumos foi criado com base nos consumos específicos médios dos dois anos correspondentes a cada tipo de dia. Procedeu-se por fim à verificação do modelo, comparando-se os consumos obtidos através do modelo (consumos previstos) com os consumos reais de cada ano. Para o ano de 2012 o modelo apresenta um desvio de 6% na previsão da água, 12% na previsão da eletricidade e de 6% na previsão do fuelóleo. Em relação ao ano de 2013, o modelo apresenta um erro de 1% para a previsão dos consumos de água, 8% para o fuelóleo e de 1% para a eletricidade. Este modelo permitirá efetuar contratos de aquisição de energia elétrica com maior rigor o que conduzirá a vantagens na sua negociação e consequentemente numa redução dos custos resultantes da aquisição da mesma. Permitirá também uma adequação dos fluxos de tesouraria à necessidade reais da Empresa, resultante de um modelo de previsão mais rigoroso e que se traduz numa mais-valia financeira para a mesma. Foi também proposto a elaboração de um plano de consumos para o ano de 2014 a partir do modelo criado em função da produção prevista para esse mesmo ano. O modelo apresenta um desvio de 24% na previsão da água, 0% na previsão da eletricidade e de 28% na previsão do fuelóleo.
Resumo:
The end consumers in a smart grid context are seen as active players. The distributed generation resources applied in smart home system as a micro and small-scale systems can be wind generation, photovoltaic and combine heat and power facility. The paper addresses the management of domestic consumer resources, i.e. wind generation, solar photovoltaic, combined heat and power, electric vehicle with gridable capability and loads, in a SCADA system with intelligent methodology to support the user decision in real time. The main goal is to obtain the better management of excess wind generation that may arise in consumer’s distributed generation resources. The optimization methodology is performed in a SCADA House Intelligent Management context and the results are analyzed to validate the SCADA system.
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i. e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.
Resumo:
Smart grids are envisaged as infrastructures able to accommodate all centralized and distributed energy resources (DER), including intensive use of renewable and distributed generation (DG), storage, demand response (DR), and also electric vehicles (EV), from which plug-in vehicles, i.e. gridable vehicles, are especially relevant. Moreover, smart grids must accommodate a large number of diverse types or players in the context of a competitive business environment. Smart grids should also provide the required means to efficiently manage all these resources what is especially important in order to make the better possible use of renewable based power generation, namely to minimize wind curtailment. An integrated approach, considering all the available energy resources, including demand response and storage, is crucial to attain these goals. This paper proposes a methodology for energy resource management that considers several Virtual Power Players (VPPs) managing a network with high penetration of distributed generation, demand response, storage units and network reconfiguration. The resources are controlled through a flexible SCADA (Supervisory Control And Data Acquisition) system that can be accessed by the evolved entities (VPPs) under contracted use conditions. A case study evidences the advantages of the proposed methodology to support a Virtual Power Player (VPP) managing the energy resources that it can access in an incident situation.
Resumo:
Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.