30 resultados para Electronic tools
em Instituto Politécnico do Porto, Portugal
Resumo:
Software tools in education became popular since the widespread of personal computers. Engineering courses lead the way in this development and these tools became almost a standard. Engineering graduates are familiar with numerical analysis tools but also with simulators (e.g. electronic circuits), computer assisted design tools and others, depending on the degree. One of the main problems with these tools is when and how to start use them so that they can be beneficial to students and not mere substitutes for potentially difficult calculations or design. In this paper a software tool to be used by first year students in electronics/electricity courses is presented. The growing acknowledgement and acceptance of open source software lead to the choice of an open source software tool – Scilab, which is a numerical analysis tool – to develop a toolbox. The toolbox was developed to be used as standalone or integrated in an e-learning platform. The e-learning platform used was Moodle. The first approach was to assess the mathematical skills necessary to solve all the problems related to electronics and electricity courses. Analysing the existing circuit simulators software tools, it is clear that even though they are very helpful by showing the end result they are not so effective in the process of the students studying and self learning since they show results but not intermediate steps which are crucial in problems that involve derivatives or integrals. Also, they are not very effective in obtaining graphical results that could be used to elaborate reports and for an overall better comprehension of the results. The developed tool was based on the numerical analysis software Scilab and is a toolbox that gives their users the opportunity to obtain the end results of a circuit analysis but also the expressions obtained when derivative and integrals calculations, plot signals, obtain vector diagrams, etc. The toolbox runs entirely in the Moodle web platform and provides the same results as the standalone application. The students can use the toolbox through the web platform (in computers where they don't have installation privileges) or in their personal computers by installing both the Scilab software and the toolbox. This approach was designed for first year students from all engineering degrees that have electronics/electricity courses in their curricula.
Resumo:
It is widely accepted that organizations and individuals must be innovative and continually create new knowledge and ideas to deal with rapid change. Innovation plays an important role in not only the development of new business, process and products, but also in competitiveness and success of any organization. Technology for Creativity and Innovation: Tools, Techniques and Applications provides empirical research findings and best practices on creativity and innovation in business, organizational, and social environments. It is written for educators, academics and professionals who want to improve their understanding of creativity and innovation as well as the role technology has in shaping this discipline.
Resumo:
This paper presents a Multi-Agent Market simulator designed for developing new agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. This tool studies negotiations based on different market mechanisms and, time and behavior dependent strategies. The results of the negotiations between agents are analyzed by data mining algorithms in order to extract rules that give agents feedback to improve their strategies. The system also includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agent reactions.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
This paper presents an agent-based simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, considering user risk preferences. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions. In the simulated market agents interact in several different ways and may joint together to form coalitions. In this paper we address multi-agent coalitions to analyse Distributed Generation in Electricity Markets
Resumo:
With the increasing importance of large commerce across the Internet it is becoming increasingly evident that in a few years the Iternet will host a large number of interacting software agents. a vast number of them will be economically motivated, and will negociate a variety of goods and services. It is therefore important to consider the economic incentives and behaviours of economic software agents, and to use all available means to anticipate their collective interactions. This papers addresses this concern by presenting a multi-agent market simulator designed for analysing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, consideting risk preferences. The system includes agents that are capable of increasing their performance with their own experience, by adapting to the market conditions. The results of the negotiations between agents are analysed by data minig algorithms in order to extract rules that give agents feedback to imprive their strategies.
Resumo:
Mestrado em Engenharia Informática. Sistemas Gráficos e Multimédia.
Oxidative Leaching of metals from electronic waste with solutions based on quaternary ammonium salts
Resumo:
The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quaternary ammonium salt (quat) such as choline chloride or chlormequat. These solutions are reminiscent of deep eutectic solvents (DES) based on quats. DES are quite similar to ionic liquids (ILs) and are used as well as alternative solvents with a great diversity of physical properties, making them attractive for replacement of hazardous, volatile solvents (e.g. VOCs). A remarkable difference between genuine DES and ILs with the solutions used in this project is the addition of rather large quantities of water. It is shown the presence of water has a lot of advantages on the leaching of metals, while the properties typical for DES still remain. The oxidizing capacities of Cu(II) stem from the existence of a stable Cu(I) component in quat based DES and thus the leaching stems from the activity of the Cu(II)/Cu(I) redox couple. The advantage of Fe(III) in combination with DES is the fact that the Fe(III)/Fe(II) redox couple becomes reversible, which is not true in pure water. This opens perspectives for regeneration of the etching solution. In this project the leaching of copper was studied as a function of gradual increasing water content from 0 - 100w% with the same concentration of copper chloride or iron(III) chloride at room temperature and 80ºC. The solutions were also tested on real PCBs. At room temperature a maximum leaching effect for copper was obtained with 30w% choline chloride with 0.2 M CuCl2.2H2O. The leaching effect is still stronger at 80°C, b ut of course these solutions are more energy consuming. For aluminium, tin, zinc and lead, the leaching was faster at 80ºC. Iron and nickel dissolved easily at room temperature. The solutions were not able to dissolve gold, silver, rhodium and platinum.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
WorldFIP is standardised as European Norm EN 50170 - General Purpose Field Communication System. Field communication systems (fieldbuses) started to be widely used as the communication support for distributed computer-controlled systems (DCCS), and are being used in all sorts of process control and manufacturing applications within different types of industries. There are several advantages in using fieldbuses as a replacement of for the traditional point-to-point links between sensors/actuators and computer-based control systems. Indeed they concern economical ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation and distribution of the processing power over the field. Typically DCCS have real-time requirements that must be fulfilled. By this, we mean that process data must be transferred between network computing nodes within a maximum admissible time span. WorldFIP has very interesting mechanisms to schedule data transfers. It explicit distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis for guaranteeing the real-time requirements of both types of traffic. A major contribution is made in the analysis of worst-case response time of aperiodic transfer requests.
Resumo:
This technical report presents a description of the output data files and the tools used to validate and to extract information from the output data files generated by the Repeater-Based Hybrid Wired/Wireless Network Simulator and the Bridge-Based Hybrid Wired/Wireless Network Simulator.
Resumo:
Si3N4 tools were coated with a thin diamond film using a Hot-Filament Chemical Vapour Deposition (HFCVD) reactor, in order to machining a grey cast iron. Wear behaviour of these tools in high speed machining was the main subject of this work. Turning tests were performed with a combination of cutting speeds of 500, 700 and 900 m min−1, and feed rates of 0.1, 0.25 and 0.4 mm rot−1, remaining constant the depth of cut of 1 mm. In order to evaluate the tool behaviour during the turning tests, cutting forces were analyzed being verified a significant increase with feed rate. Diamond film removal occurred for the most severe set of cutting parameters. It was also observed the adhesion of iron and manganese from the workpiece to the tool. Tests were performed on a CNC lathe provided with a 3-axis dynamometer. Results were collected and registered by homemade software. Tool wear analysis was achieved by a Scanning Electron Microscope (SEM) provided with an X-ray Energy Dispersive Spectroscopy (EDS) system. Surface analysis was performed by a profilometer.
Resumo:
Most machining tasks require high accuracy and are carried out by dedicated machine-tools. On the other hand, traditional robots are flexible and easy to program, but they are rather inaccurate for certain tasks. Parallel kinematic robots could combine the accuracy and flexibility that are usually needed in machining operations. Achieving this goal requires proper design of the parallel robot. In this chapter, a multi-objective particle swarm optimization algorithm is used to optimize the structure of a parallel robot according to specific criteria. Afterwards, for a chosen optimal structure, the best location of the workpiece with respect to the robot, in a machining robotic cell, is analyzed based on the power consumed by the manipulator during the machining process.
Resumo:
Remote engineering (also known as online engineering) may be defined as a combination of control engineering and telematics. In this area, specific activities require computacional skills in order to develop projects where electrical devives are monitored and / or controlled, in an intercative way, through a distributed network (e.g. Intranet or Internet). In our specific case, we will be dealing with an industrial plant. Within the last few years, there has been an increase in the number of activities related to remote engineering, which may be connected to the phenomenon of the large extension experienced by the Internet (e.g. bandwith, number of users, development tools, etc.). This increase opens new and future possibilities to the implementation of advance teleworking (or e-working) positions. In this paper we present the architecture for a remote application, accessible through the Internet, able to monitor and control a roller hearth kiln, used in a ceramics industry for firing materials. The proposed architecture is based on a micro web server, whose main function is to monitor and control the firing process, by reading the data from a series of temperature sensors and by controlling a series of electronic valves and servo motors. This solution is also intended to be a low-cost alternative to other potential solutions. The temperature readings are obtained through K-type thermopairs and the gas flow is controlled through electrovalves. As the firing process should not be stopped before its complete end, the system is equipped with a safety device for that specific purpose. For better understanding the system to be automated and its operation we decided to develop a scale model (100:1) and experiment on it the devised solution, based on a Micro Web Server.
Resumo:
The distinctive characteristics of carbon fibre reinforced plastics, like low weight or high specific strength, had broadened their use to new fields. Due to the need of assembly to structures, machining operations like drilling are frequent. In result of composites inhomogeneity, this operation can lead to different damages that reduce mechanical strength of the parts in the connection area. From these damages, delamination is the most severe. A proper choice of tool and cutting parameters can reduce delamination substantially. In this work the results obtained with five different tool geometries are compared. Conclusions show that the choice of an adequate drill can reduce thrust forces, thus delamination damage.