26 resultados para Electrically active Polymer Nanocomposites
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper summarizes a project that is contributing to a change in the way of teaching and learning Mathematics. Mathematics is a subject of the Accounting and Administration course. In this subject we teach: Functions and Algebra. The aim is that the students understand the basic concepts and is able to apply them in other issues, when possible, establishing a bridge between the issues that they have studied and their application in Accounting. As from this year, the Accounting course falls under in Bologna Process. The teacher and the student roles have changed. The time for theoretical and practical classes has been reduced, so it was necessary to modify the way of teaching and learning. In the theoretical classes we use systems of multimedia projection to present the concepts, and in the practical classes we solve exercises. To supplement our theoretical and practical classes we have developed an active mathematics project called MatActiva based on the Moodle platform offered by PAOL - Projecto de Apoio Online (Online Support Project). In the last versions of Moodle, it is possible use the TeX language to create math questions. Using this tool we created a set of interactive materials. With the creation of this new project we wanted to take advantage already obtained results with the previous experiences, giving to the students opportunities to complement their study in Mathematics. One of the great objectives is to motivate students, encourage them to overcome theirs difficulties through an auto-study, giving them more confidence and the opportunity to seeing others perspectives of the mathematics subjects. In the MatActiva project the students have a big collection of information about the way of the subject works, which includes the objectives, the program, recommended bibliography, evaluation method and summaries. It works as material support for the practical and theoretical classes, the slides of the theoretical classes are available, the sheets with exercises for the students to do in the classroom and complementary exercises, as well as the exams of previous years. Students can also do diagnostic tests and evaluation tests online. Our approach is a reflexive one, based on the professional experience of the teachers that explore and incorporate new tools of Moodle with their students and coordinate the project MatActiva.
Resumo:
DESIGN: A randomized controlled trial.OB JECTIVE: To investigate the immediate effects on pressure pain thresholds over latent trigger points (TrPs) in the masseter and temporalis muscles and active mouth opening following atlanto-occipital joint thrust manipulation or a soft tissue manual intervention targeted to the suboccipital muscles. BACKGROUND : Previous studies have described hypoalgesic effects of neck manipulative interventions over TrPs in the cervical musculature. There is a lack of studies analyzing these mechanisms over TrPs of muscles innervated by the trigeminal nerve. METHODS: One hundred twenty-two volunteers, 31 men and 91 women, between the ages of 18 and 30 years, with latent TrPs in the masseter muscle, were randomly divided into 3 groups: a manipulative group who received an atlanto-occipital joint thrust, a soft tissue group who received an inhibition technique over the suboccipital muscles, and a control group who did not receive an intervention. Pressure pain thresholds over latent TrPs in the masseter and temporalis muscles, and active mouth opening were assessed pretreatment and 2 minutes posttreatment by a blinded assessor. Mixed-model analyses of variance (ANOVA) were used to examine the effects of interventions on each outcome, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. RESULTS: The 2-by-3 mixed-model ANOVA revealed a significant group-by-time interaction for changes in pressure pain thresholds over masseter (P<.01) and temporalis (P =.003) muscle latent TrPs and also for active mouth opening (P<.001) in favor of the manipulative and soft tissue groups. Between-group effect sizes were small. CONCLUSIONS: The application of an atlanto-occipital thrust manipulation or soft tissue technique targeted to the suboccipital muscles led to an immediate increase in pressure pain thresholds over latent TrPs in the masseter and temporalis muscles and an increase in maximum active mouth opening. Nevertheless, the effects of both interventions were small and future studies are required to elucidate the clinical relevance of these changes. LEVEL OF EVIDENCE : Therapy, level 1b. J Orthop Sports Phys Ther 2010;40(5):310-317. doi:10.2519/jospt.2010.3257. KEYWORDSDS: cervical manipulation, muscle trigger points, neck, TMJ, upper cervical.
Resumo:
Introdução: A unidade de biofeedback de pressão, em indivíduos com dor lombo-pélvica, é utilizada durante exercícios de estabilização segmentar, no entanto ainda carece de evidência científica. Objetivo: Determinar a relação entre a unidade de biofeedback de pressão (UBFP), o deslocamento do centro de pressão no sentido médio-lateral (COPml) e a atividade eletromiográfica abdominal durante o active straight leg raising (ASLR) em indivíduos com e sem dor lombo-pélvica, bem como identificar diferenças entre os grupos. Metodologia: Estudo transversal analítico em 18 estudantes universitários voluntários com dor lombo-pélvica crónica inespecífica (GCD) e em 20 sem dor (GSD). Durante o ASLR (desafio postural dinâmico) foram avaliadas as variações máxima e média da pressão (recorrendo à UBFP) e do deslocamento do COPml (através da plataforma de forças), bem como a atividade muscular abdominal, bilateralmente, com recurso à eletromiografia de superfície. Estatisticamente recorreu-se à correlação de Spearman e ao teste Mann-Whitney U, ambos com um nível de significância de 0,05. Resultados: No GCD, ao contrário do GSD, não foi verificada uma relação entre a UBFP e a atividade do transverso abdominal/obliquo interno (TrA/OI) contra-lateral. Correlações moderadas, mas com sentidos opostos, foram evidenciadas em ambos os grupos, entre o deslocamento do COPml e a atividade do TrA/OI contra-lateral. Em ambos os grupos, a UBFP demonstrou estar fortemente correlacionada com o COPml. Não foram observadas diferenças significativas entre os grupos nas variáveis avaliadas. Conclusão: A UBFP, no GCD, não se apresentou relacionada com a atividade do TrA/OI. Contudo, demonstrou uma relação com o deslocamento do COPml, em ambos os grupos, sendo portanto um indicador de estabilidade do tronco e assim, uma ferramenta útil em ambiente clínico. No GCD observou-se que uma maior atividade muscular TrA/OI pressupõe maior deslocamento do COPml, sendo uma relação contrária à verificada no GSD, podendo ser um indicador da perda da sua ação tónica.
Resumo:
Objective: The purpose of this study was to investigate effects of different manual techniques on cervical ranges of 17 motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. 18 Methods: One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer 19 work, were randomly divided into 5 groups: ischemic compression (IC) group (n = 24); passive stretching group (n = 20 23); muscle energy technique group (n = 23); and 2 control groups, wait-and-see group (n = 25) and placebo group 21 (n = 22). Cervical spine range of movement was measured using a cervical range of motion instrument as well as 22 pressure pain sensitivity by means of an algometer and a visual analog scale. Outcomes were assessed pretreatment, 23 immediately, and 24 hours after the intervention and 1 week later by a blind researcher. A 4 × 5 mixed repeated- 24 measures analysis of variance was used to examine the effects of the intervention and Cohen d coefficient was used. 25 Results: A group-by-time interaction was detected in all variables (P b .01), except contralateral rotation. The 26 immediate effect sizes of the contralateral flexion, ipsilateral rotation, and pressure pain threshold were large for 3 27 experimental groups. Nevertheless, after 24 hours and 1 week, only IC group maintained the effect size. 28 Conclusions: Manual techniques on upper trapezius with latent trigger point seemed to improve the cervical range of 29 motion and the pressure pain sensitivity. These effects persist after 1 week in the IC group. (J Manipulative Physiol 301 Ther 2013;xx:1-10)
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.
Resumo:
This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies in local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto robots and was used to control and detect loss of for traction. %and to detect the ball in the kicking device. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.
Resumo:
Aerodynamic drag is known to be one of the factors contributing more to increased aircraft fuel consumption. The primary source of skin friction drag during flight is the boundary layer separation. This is the layer of air moving smoothly in the immediate vicinity of the aircraft. In this paper we discuss a cyber-physical system approach able of performing an efficient suppression of the turbulent flow by using a dense sensing deployment to detect the low pressure region and a similarly dense deployment of actuators to manage the turbulent flow. With this concept, only the actuators in the vicinity of a separation layer are activated, minimizing power consumption and also the induced drag.
Resumo:
Introdução: O Active Straight Leg Raise (ASLR) tem sido sugerido como um indicador clínico da estabilidade lombopélvica. Estratégias passivas e ativas podem contribuir para aumentar esta estabilidade, assim como programas de exercício baseados nas mesmas estratégias ativas. Objetivos: Comparar os efeitos imediatos da compressão pélvica manual (CP), do drawing-in (DI) e do bracing abdominal (BA) durante o ASLR em indivíduos com e sem dor lombopélvica crónica e inespecífica, e avaliar o efeito prolongado das manobras de estabilização ativas através dos programas de exercícios de controlo motor, Pilates e McGill. Métodos: Estudo transversal, com uma amostra de 111 voluntários, 52 sem dor lombopélvica (NLPPG) e 59 com dor lombopélvica (LPPG), e estudo experimental, formado pelo LPPG dividido em 19 no grupo controlo (GC), 20 no grupo pilates (GP) e 20 no grupo mcgill (GMg). Foi avaliado o ASLR padrão, o ASLR com CP, o ASLR com DI e ASLR com BA. Os participantes foram avaliados antes e após as 8 semanas de implementação dos programas exercícios de McGill e Richardson, apenas aos respetivos grupos. Resultados: O LPPG apresentou significativamente maior score no ASLR comparativamente ao NLPPG (z=-9,361; p<0,001). Apesar do BA ter apresentado scores inferiores às restantes estratégias (p<0,001), todas elas foram capazes de diminuir o score do ASLR (p<0,001). Após a aplicação dos programas de exercícios, verificou-se que o GP (p<0,001) e o GMg (p<0,001) apresentaram scores significativamente menores no ASLR, relativamente ao GC. No GP e no GMg verificou-se uma diminuição do score do ASLR (Z=-4,028; p<0,001; Z=-4,179; p<0,001, respetivamente). Além disso, GMg apresentou uma tendência para apresentar menores scores do ASLR comparativamente ao GP. Conclusão: Qualquer uma destas manobras de estabilização quando adicionada ao ASLR pode aumentar a estabilidade lombopélvica, especialmente o BA. Os exercícios de Pilates e de McGill permitiram melhorar os scores do ASLR.
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.
Resumo:
The development and applications of thermoset polymeric composites, namely fiber reinforced polymers (FRP), have shifted in the last decades more and more into the mass market [1]. Production and consume have increased tremendously mainly for the construction, transportation and automobile sectors [2, 3]. Although the many successful uses of thermoset composite materials, recycling process of byproducts and end of lifecycle products constitutes a more difficult issue. The perceived lack of recyclability of composite materials is now increasingly important and seen as a key barrier to the development or even continued used of these materials in some markets.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the waste reuse in polymer mortars and concrete. © 2011, Advanced Engineering Solutions.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one-factor-at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and filler replacements for polymer mortar, with significant gain of mechanical properties with regard to non-modified polymer mortars.