30 resultados para Electric Power Factor
em Instituto Politécnico do Porto, Portugal
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
Os objectivos principais deste estudo são a caracterização de uma das linhas de extrusão existentes na Cabelte, nomeadamente a linha de extrusão de referência EP5, composta por duas extrusoras. Pretende-se fazer a determinação de indicadores energéticos e de processo e a optimização do consumo energético, no que diz respeito à energia consumida e às perdas térmicas relativas a esta linha. Para fazer a monitorização da linha de extrusão EP5 foi colocado no quadro geral dessa linha um equipamento central de medida de forma a ser possível a sua monitorização. No entanto, para a extrusora auxiliar as medições foram efectuadas com uma pinça amperimétrica e um fasímetro. Foram também efectuados ensaios onde foi avaliada a quantidade de material transformada, para isso foi utilizado um equipamento de pesagem, doseador gravimétrico aplicado nas extrusoras. As medições de temperatura para os cálculos das perdas térmicas da extrusora principal e para a caracterização dos materiais plásticos, foram efectuadas utilizando um termómetro digital. Foram efectuados ensaios de débito às extrusoras auxiliar e principal e foi estudada a variação do factor de potência em função da rotação do fuso. Na perspectiva do utilizador final a optimização para a utilização racional de energia está na redução de encargos da factura de energia eléctrica. Essa factura não depende só da quantidade mas também do modo temporal como se utiliza essa energia, principalmente a energia eléctrica, bastante dependente do período em que é consumida. Uma metodologia diferente no planeamento da produção, contemplando o fabrico dos cabos com maior custo específico nas horas de menor custo energético, implicaria uma redução dos custos específicos de 18,7% para o horário de verão e de 20,4% para o horário de inverno. Os materiais de revestimento utilizados (PE e PVC), influenciam directamente os custos energéticos, uma vez que o polietileno (PE) apresenta sempre valores de entalpia superiores (0,317 kWh/kg e 0,281 kWh/kg)) e necessita de temperaturas de trabalho mais elevadas do que o policloreto de vinilo (PVC) (0,141 kWh/kg e 0,124 kWh/kg). O consumo específico tendencialmente diminui à medida que aumenta a rotação do fuso, até se atingir o valor de rotação óptimo, a partir do qual esta tendência se inverte. O cosφ para as duas extrusoras em estudo, aumenta sempre com o aumento de rotação do fuso. Este estudo permitiu avaliar as condições óptimas no processo de revestimento dos cabos, de forma a minimizarmos os consumos energéticos. A redução de toda a espécie de desperdícios (sobre consumos, desperdício em purgas) é uma prioridade de gestão que alia também a eficácia à eficiência, e constitui uma ferramenta fundamental para assegurar o futuro da empresa. O valor médio lido para o factor de potência (0,38) da linha EP5, valor extremamente baixo e que vem associado à energia reactiva, além do factor económico que lhe está inerente, condiciona futuras ampliações. A forma de se corrigir o factor de potência é instalando uma bateria de condensadores de 500 kVAr. Considerando o novo sistema tarifário aplicado à energia reactiva, vamos ter um ganho de 36167,4 Euro/ano e o período de retorno de investimento é de 0,37 ano (4,5 meses). Esta medida implica também uma redução anual na quantidade de CO2 emitida de 6,5%. A quantificação das perdas térmicas é importante, pois só desta forma se podem definir modos de actuação de forma a aumentar a eficiência energética. Se não existir conhecimento profundo dos processos e metodologias correctas, não podem existir soluções eficientes, logo é importante medir antes de avançar com qualquer medida de gestão.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Estudo de uma bomba de calor de expansão direta assistida por energia solar para a preparação de AQS
Resumo:
Este estudo consiste na caracterização da eficiência energética de uma bomba de calor de expansão direta que utiliza a energia solar como fonte térmica. De uma forma geral, teve-se a obrigação de procurar cada vez mais recursos renováveis e neste sentido a bomba de calor de expansão direta tem um papel importante no aquecimento de águas quentes sanitárias (AQS). Como ponto de partida, foi realizada uma descrição detalhada sobre todos os equipamentos da bomba de calor e elaborado um desenho técnico que identifica todos os componentes. No laboratório (casa inteligente) realizaram-se vários ensaios a fim de interpretar com rigor os resultados obtidos do desempenho da bomba de calor (COP) e do fator médio de desempenho sazonal (SPF). No início, realizaram-se ensaios para determinar as perdas estáticas do sistema termodinâmico, de seguida foram elaborados ensaios segundo a norma EN 16147 e por fim, ensaios de acordo com o perfil de utilização de AQS definido. No estudo experimental do COP, obteve-se uma elevada eficiência energética com um valor médio de 4,12. O COP aumenta para valores médios de 5 quando a temperatura de água no termoacumulador desce para 35ºC. Verificou-se que durante o período diurno o COP aumenta aproximadamente de 10% relativamente ao período noturno. A potência elétrica é mais elevada (450W) quando a água no termoacumulador está perto da temperatura desejável (55ºC), originando um esforço maior da bomba de calor. No estudo experimental do SPF, verificou-se que nos ensaios segundo a norma EN16147 os valores obtidos variaram entre 1,39 e 1,50 (Classe “B”). No estudo realizado de acordo com o perfil de utilização de AQS definido pelo utilizador, o SPF é superior em 12% relativamente ao obtido segundo os ensaios realizados de acordo a norma EN16147. Verificou-se que o aumento da temperatura do ar exterior implica um aumento do SPF (cerca de 2% a 5%), enquanto a energia solar não influência nos resultados.
Resumo:
A definition of medium voltage (MV) load diagrams was made, based on the data base knowledge discovery process. Clustering techniques were used as support for the agents of the electric power retail markets to obtain specific knowledge of their customers’ consumption habits. Each customer class resulting from the clustering operation is represented by its load diagram. The Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) were applied to an electricity consumption data from a utility client’s database in order to form the customer’s classes and to find a set of representative consumption patterns. The WEACS approach is a clustering ensemble combination approach that uses subsampling and that weights differently the partitions in the co-association matrix. As a complementary step to the WEACS approach, all the final data partitions produced by the different variations of the method are combined and the Ward Link algorithm is used to obtain the final data partition. Experiment results showed that WEACS approach led to better accuracy than many other clustering approaches. In this paper the WEACS approach separates better the customer’s population than Two-step clustering algorithm.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
This paper proposes a swarm intelligence long-term hedging tool to support electricity producers in competitive electricity markets. This tool investigates the long-term hedging opportunities available to electric power producers through the use of contracts with physical (spot and forward) and financial (options) settlement. To find the optimal portfolio the producer risk preference is stated by a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance estimation and the expected return are based on a forecasted scenario interval determined by a long-term price range forecast model, developed by the authors, whose explanation is outside the scope of this paper. The proposed tool makes use of Particle Swarm Optimization (PSO) and its performance has been evaluated by comparing it with a Genetic Algorithm (GA) based approach. To validate the risk management tool a case study, using real price historical data for mainland Spanish market, is presented to demonstrate the effectiveness of the proposed methodology.
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
Although it is always weak between RFID Tag and Terminal in focus of the security, there are no security skills in RFID Tag. Recently there are a lot of studying in order to protect it, but because it has some physical limitation of RFID, that is it should be low electric power and high speed, it is impossible to protect with the skills. At present, the methods of RFID security are using a security server, a security policy and security. One of them the most famous skill is the security module, then they has an authentication skill and an encryption skill. In this paper, we designed and implemented after modification original SEED into 8 Round and 64 bits for Tag.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Mestrado em Engenharia Química
Resumo:
O objectivo deste trabalho é optimizar o planeamento de produção tendo como meta a redução do custo total da energia eléctrica consumida. Este trabalho está dividido em 3 etapas distintas: na 1ª etapa foi feito um levantamento do problema, das restrições do mesmo e da escolha do modelo para a sua resolução. Na etapa seguinte, fez-se a escolha da ferramenta a usar, que foi o Xpress, e fez-se a implementação do problema nessa mesma ferramenta. E por fim, na 3ª etapa, foi feita a validação do modelo e análise das soluções obtidas com comparações com que o era feito antes. Recorrendo a programação inteira foi desenvolvido um modelo de optimização para atingir o objectivo em causa e consequentemente foi escrito o código que reflectisse o modelo matemático. Todos os passos necessários à sua implementação foram concluídos e validados com comparação com o que antes se fazia, notando-se assim melhorias ao nível de eficiência energética na ordem dos 8%, mas também uma melhoria no aproveitamento de recursos humanos e tempo que eram despendidos para desenvolver planos de produção de forma manual. Essa melhoria temporal que se compreende entre quatro a seis horas semanais pode ser aplicada noutras actividades da empresa com maior valor acrescentado.