3 resultados para Ecosystem-level models
em Instituto Politécnico do Porto, Portugal
Resumo:
Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.
Resumo:
In this paper, we present two Partial Least Squares Regression (PLSR) models for compressive and flexural strength responses of a concrete composite material reinforced with pultrusion wastes. The main objective is to characterize this cost-effective waste management solution for glass fiber reinforced polymer (GFRP) pultrusion wastes and end-of-life products that will lead, thereby, to a more sustainable composite materials industry. The experiments took into account formulations with the incorporation of three different weight contents of GFRP waste materials into polyester based mortars, as sand aggregate and filler replacements, two waste particle size grades and the incorporation of silane adhesion promoter into the polyester resin matrix in order to improve binder aggregates interfaces. The regression models were achieved for these data and two latent variables were identified as suitable, with a 95% confidence level. This technological option, for improving the quality of GFRP filled polymer mortars, is viable thus opening a door to selective recycling of GFRP waste and its use in the production of concrete-polymer based products. However, further and complementary studies will be necessary to confirm the technical and economic viability of the process.
Risk Acceptance in the Furniture Sector: Analysis of Acceptance Level and Relevant Influence Factors
Resumo:
Risk acceptance has been broadly discussed in relation to hazardous risk activities and/or technologies. A better understanding of risk acceptance in occupational settings is also important; however, studies on this topic are scarce. It seems important to understand the level of risk that stakeholders consider sufficiently low, how stakeholders form their opinion about risk, and why they adopt a certain attitude toward risk. Accordingly, the aim of this study is to examine risk acceptance in regard to occupational accidents in furniture industries. The safety climate analysis was conducted through the application of the Safety Climate in Wood Industries questionnaire. Judgments about risk acceptance, trust, risk perception, benefit perception, emotions, and moral values were measured. Several models were tested to explain occupational risk acceptance. The results showed that the level of risk acceptance decreased as the risk level increased. High-risk and death scenarios were assessed as unacceptable. Risk perception, emotions, and trust had an important influence on risk acceptance. Safety climate was correlated with risk acceptance and other variables that influence risk acceptance. These results are important for the risk assessment process in terms of defining risk acceptance criteria and strategies to reduce risks.