20 resultados para ELASTIC STOCKINGS
em Instituto Politécnico do Porto, Portugal
Resumo:
Pretendeu-se verificar a influência de dois tipos de ligaduras no tempo de reacção dos peroniais, através de electromiografia de superfície, em atletas femininas de voleibol, com história de entorse e indicadores de instabilidade. Efectuou-se um estudo com uma amostra de 15 atletas. Seleccionaram-se as ligaduras elástica adesiva em heel-lock e kinesiotape com aplicação peronial e ligamentar, pela sua indicação de diminuição da instabilidade tíbio-társica. Utilizaram-se os testes paramétricos ANOVA de medidas repetidas e Teste t para amostras emparelhadas. Verificou-se que a aplicação da ligadura kinesiotape reduziu o tempo de reacção dos peroniais enquanto a ligadura elástica não exerceu influência sobre este.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
This study aimed to carry out experimental work to determine, for Newtonian and non-Newtonian fluids, the friction factor (fc) with simultaneous heat transfer, at constant wall temperature as boundary condition, in fully developed laminar flow inside a vertical helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w). The non-Newtonian fluids were aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations of 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations of 0.1% and 0.2% (w/w). According to the rheological study done, the polymer solutions had shear-thinning behavior and different values of viscoelasticity. The helical coil used has an internal diameter, curvature ratio, length and pitch, respectively: 0.00483 m, 0.0263, 5.0 m and 11.34 mm. It was concluded that the friction factors, with simultaneous heat transfer, for Newtonian fluids can be calculated using expressions from literature for isothermal flows. The friction factors for CMC and XG solutions are similar to those for Newtonian fluids when the Dean number, based in a generalized Reynolds number, is less than 80. For Dean numbers higher than 80, the friction factors of the CMC solutions are lower those of the XG solutions and of the Newtonian fluids. In this range the friction factors decrease with the increase of the viscometric component of the solution and increase for increasing elastic component. The change of behavior at Dean number 80, for Newtonian and non-Newtonian fluids, is in accordance with the study of Ali [4]. There is a change of behavior at Dean number 80, for Newtonian and non-Newtonian fluids, which is in according to previous studies. The data also showed that the use of the bulk temperature or of the film temperature to calculate the physical properties of the fluid has a residual effect in the friction factor values.
Resumo:
This study aimed to carry out experimental work to obtain, for Newtonian and non-Newtonian fluids, heat transfer coefficients, at constant wall temperature as boundary condition, in fully developed laminar flow inside a helical coil. The Newtonian fluids studied were aqueous solutions of glycerol, 25%, 36%, 43%, 59% and 78% (w/w) and the non-Newtonian fluids aqueous solutions of carboxymethylcellulose (CMC), a polymer, with concentrations 0.1%, 0.2%, 0.3%, 0.4% and 0.6% (w/w) and aqueous solutions of xanthan gum (XG), another polymer, with concentrations 0.1% and 0.2% (w/w). According to the rheological study performed, the polymer solutions had shear thinning behavior and different values of elasticity. The helical coil used has internal diameter, curvature ratio, length and pitch, respectively: 0.004575 m, 0.0263, 5.0 m and 11.34 mm. The Nusselt numbers for the CMC solutions are, on average, slightly higher than those for Newtonian fluids, for identical Prandtl and generalized Dean numbers. As outcome, the viscous component of the shear thinning polymer tends to potentiate the mixing effect of the Dean cells. The Nusselt numbers of the XG solutions are significant lower than those of the Newtonian solutions, for identical Prandtl and generalized Dean numbers. Therefore, the elastic component of the polymer tends to diminish the mixing effect of the Dean cells. A global correlation, for Nusselt number as a function of Péclet, generalized Dean and Weissenberg numbers for all Newtonian and non-Newtonian solutions studied, is presented.
Resumo:
n the last decades the biocomposites have been widely used in the construction, automobile and aerospace industries. Not only the interface transition zone (ITZ) but also the heterogeneity of natural fibres affects the mechanical behaviour of these composites. This work focuses on the numerical and experimental analyses of a polymeric composite fabricated with epoxy resin and unidirectional sisal and banana fibres. A three-dimensional model was set to analyze the composites using the elastic properties of the individual phases. In addition, a two-dimensional model was set taking into account the effective composite properties obtained by micromechanical models. A tensile testing was performed to validate the numerical analyses and evaluating the interface condition of the constitutive phases.
Resumo:
Nowadays, fibre reinforced plastics are used in a wide variety of applications. Apart from the most known reinforcement fibres, like glass or carbon, natural fibres can be seen as an economical alternative. However, some mistrust is yet limiting the use of such materials, being one of the main reasons the inconsistency normally found in their mechanical properties. It should be noticed that these materials are more used for their low density than for their high stiffness. In this work, two different types of reinforced plates were compared: glass reinforced epoxy plate and sisal reinforced epoxy plate. For material characterization purposes, tensile and flexural tests were carried out. Main properties of both materials, like elastic modulus, tensile strength or flexural modulus, are presented and compared with reference values. Afterwards, plates were drilled under two different feed rates: low and high, with two diverse tools: twist and brad type drill, while cutting speed was kept constant. Thrust forces during drilling were monitored. Then, delamination area around the hole was assessed by using digital images that were processed using a computational platform previously developed. Finally, drilled plates were mechanically tested for bearing and open-hole resistance. Results were compared and correlated with the measured delamination. Conclusions contribute to the understanding of natural fibres reinforced plastics as a substitute to glass fibres reinforced plastics, helping on cost reductions without compromising reliability, as well as the consequence of delamination on mechanical resistance of this type of composites.
Resumo:
Adhesive bonding as a joining or repair method has a wide application in many industries. Repairs with bonded patches are often carried out to re-establish the stiffness at critical regions or spots of corrosion and/or fatigue cracks. Single and double-strap repairs (SS and DS, respectively) are a viable option for repairing. For the SS repairs, a patch is adhesively-bonded on one of the structure faces. SS repairs are easy to execute, but the load eccentricity leads to peel peak stresses at the overlap edges. DS repairs involve the use of two patches, one on each face of the structure. These are more efficient than SS repairs, due to the doubling of the bonding area and suppression of the transverse deflection of the adherends. Shear stresses also become more uniform as a result of smaller differential straining. The experimental and Finite Element (FE) study presented here for strength prediction and design optimization of bonded repairs includes SS and DS solutions with different values of overlap length (LO). The examined values of LO include 10, 20 and 30 mm. The failure strengths of the SS and DS repairs were compared with FE results by using the Abaqus® FE software. A Cohesive Zone Model (CZM) with a triangular shape in pure tensile and shear modes, including the mixed-mode possibility for crack growth, was used to simulate fracture of the adhesive layer. A good agreement was found between the experiments and the FE simulations on the failure modes, elastic stiffness and strength of the repairs, showing the effectiveness and applicability of the proposed FE technique in predicting strength of bonded repairs. Furthermore, some optimization principles were proposed to repair structures with adhesively-bonded patches that will allow repair designers to effectively design bonded repairs.
Resumo:
Despite the fact that their physical properties make them an attractive family of materials, composites machining can cause several damage modes such as delamination, fibre pull-out, thermal degradation, and others. Minimization of axial thrust force during drilling reduces the probability of delamination onset, as it has been demonstrated by analytical models based on linear elastic fracture mechanics (LEFM). A finite element model considering solid elements of the ABAQUS® software library and interface elements including a cohesive damage model was developed in order to simulate thrust forces and delamination onset during drilling. Thrust force results for delamination onset are compared with existing analytical models.
Resumo:
This work reports on the experimental and numerical study of the bending behaviour of two-dimensional adhesively-bonded scarf repairs of carbon-epoxy laminates, bonded with the ductile adhesive Araldite 2015®. Scarf angles varying from 2 to 45º were tested. The experimental work performed was used to validate a numerical Finite Element analysis using ABAQUS® and a methodology developed by the authors to predict the strength of bonded assemblies. This methodology consists on replacing the adhesive layer by cohesive elements, including mixed-mode criteria to deal with the mixed-mode behaviour usually observed in structures. Trapezoidal laws in pure modes I and II were used to account for the ductility of the adhesive used. The cohesive laws in pure modes I and II were determined with Double Cantilever Beam and End-Notched Flexure tests, respectively, using an inverse method. Since in the experiments interlaminar and transverse intralaminar failures of the carbon-epoxy components also occurred in some regions, cohesive laws to simulate these failure modes were also obtained experimentally with a similar procedure. A good correlation with the experiments was found on the elastic stiffness, maximum load and failure mode of the repairs, showing that this methodology simulates accurately the mechanical behaviour of bonded assemblies.
Resumo:
Fiber reinforced plastics are increasing their importance as one of the most interesting groups of material on account of their low weight, high strength, and stiffness. To obtain good quality holes, it is important to identify the type of material, ply stacking sequence, and fiber orientation. In this article, the drilling of quasi-isotropic hybrid carbon +glass/epoxy plates is analyzed. Two commercial drills and a special step drill are compared considering the thrust force and delamination extension. Results suggest that the proposed step drill can be a suitable option in laminate drilling.
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
Though the formal mathematical idea of introducing noninteger order derivatives can be traced from the 17th century in a letter by L’Hospital in which he asked Leibniz what the meaning of D n y if n = 1/2 would be in 1695 [1], it was better outlined only in the 19th century [2, 3, 4]. Due to the lack of clear physical interpretation their first applications in physics appeared only later, in the 20th century, in connection with visco-elastic phenomena [5, 6]. The topic later obtained quite general attention [7, 8, 9], and also found new applications in material science [10], analysis of earth-quake signals [11], control of robots [12], and in the description of diffusion [13], etc.
Resumo:
This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.
Resumo:
Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.