5 resultados para Drainage, House.
em Instituto Politécnico do Porto, Portugal
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
The presented work was conducted within the Dissertation / Internship, branch of Environmental Protection Technology, associated to the Master thesis in Chemical Engineering by the Instituto Superior de Engenharia do Porto and it was developed in the Aquatest a.s, headquartered in Prague, in Czech Republic. The ore mining exploitation in the Czech Republic began in the thirteenth century, and has been extended until the twentieth century, being now evident the consequences of the intensive extraction which includes contamination of soil and sub-soil by high concentrations of heavy metals. The mountain region of Zlaté Hory was chosen for the implementation of the remediation project, which consisted in the construction of three cells (tanks), the first to raise the pH, the second for the sedimentation of the formed precipitates and a third to increase the process efficiency in order to reduce high concentrations of metals, with special emphasis on iron, manganese and sulfates. This project was initiated in 2005, being pioneer in this country and is still ongoing due to the complex chemical and biological phenomenon’s inherent to the system. At the site where the project was implemented, there is a natural lagoon, thereby enabling a comparative study of the two systems (natural and artificial) regarding the efficiency of both in the reduction/ removal of the referred pollutants. The study aimed to assist and cooperate in the ongoing investigation at the company Aquatest, in terms of field work conducted in Zlaté Hory and in terms of research methodologies used in it. Thereby, it was carried out a survey and analysis of available data from 2005 to 2008, being complemented by the treatment of new data from 2009 to 2010. Moreover, a theoretical study of the chemical and biological processes that occurs in both systems was performed. Regarding the field work, an active participation in the collection and in situ sample analyzing of water and soil from the natural pond has been attained, with the supervision of Engineer, Irena Šupiková. Laboratory analysis of water and soil were carried out by laboratory technicians. It was found that the natural lagoon is more efficient in reducing iron and manganese, being obtained removal percentages of 100%. The artificial lagoon had a removal percentage of 90% and 33% for iron and manganese respectively. Despite the minor efficiency of the constructed wetland, it must be pointed out that this system was designed for the treatment and consequent reduction of iron. In this context, it can conclude that the main goal has been achieved. In the case of sulphates, the removal optimization is yet a goal to be achieved not only in the Czech Republic but also in other places where this type of contamination persists. In fact, in the natural lagoon and in the constructed wetland, removal efficiencies of 45% and 7% were obtained respectively. It has been speculated that the water at the entrance of both systems has different sources. The analysis of the collected data shows at the entrance of the natural pond, a concentration of 4.6 mg/L of total iron, 14.6 mg/L of manganese and 951 mg/L of sulphates. In the artificial pond, the concentrations are 27.7 mg/L, 8.1 mg/L and 382 mg/L respectively for iron, manganese and sulphates. During 2010 the investigation has been expanded. The study of soil samples has started in order to observe and evaluate the contribution of bacteria in the removal of heavy metals being in its early phase. Summarizing, this technology has revealed to be an interesting solution, since in addition to substantially reduce the mentioned contaminants, mostly iron, it combines the low cost of implementation with an reduced maintenance, and it can also be installed in recreation parks, providing habitats for plants and birds.
Resumo:
The development and implementation of measures which promote the reduction of the impacts of forest fires on soils is imperative and should be part of any strategy for forest and soil preservation and recovery, especially considering the actual scenario of continuous growth in the number of fires and burnt area. Consequently, with the dendrocaustologic reality that has characterized the Portuguese mainland in recent decades, a research project promoted by the Center for the Study of Geography and Spatial Planning (CEGOT) was implemented with the objective of applying several erosion mitigation measures in a burned area of the Peneda-Geres National Park in NW Portugal. This paper therefore seeks to present the measures applied in the study area within the project Soil Protec, relating to triggered channel processes and the results of preliminary observations concerning the evaluation of the effectiveness of erosion mitigation measures implemented, as well as their cost/benefit ratio.
Resumo:
The implementation of smart homes allows the domestic consumer to be an active player in the context of the Smart Grid (SG). This paper presents an intelligent house management system that is being developed by the authors to manage, in real time, the power consumption, the micro generation system, the charge and discharge of the electric or plug-in hybrid vehicles, and the participation in Demand Response (DR) programs. The paper proposes a method for the energy efficiency analysis of a domestic consumer using the SCADA House Intelligent Management (SHIM) system. The main goal of the present paper is to demonstrate the economic benefits of the implemented method. The case study considers the consumption data of some real cases of Portuguese house consumption over 30 days of June of 2012, the Portuguese real energy price, the implementation of the power limits at different times of the day and the economic benefits analysis.
Resumo:
A presente dissertação foi realizada no âmbito do Mestrado de Engenharia e Gestão Industrial da Escola Superior de Estudos Industriais e de Gestão, de Vila do Conde. O projeto desenvolvido tem como tema principal a Otimização de processos de Logística in-house baseado num projeto, em contexto empresarial da empresa cliente, Continental Mabor S.A., da Rangel Distribuição e Logística, S.A. Este projeto tem como objetivo a “aglomeração” de dois armazéns do cliente, devido à necessidade de ocupação do armazém de produto acabado interno, para aumento da área de produção. Inicialmente foi feita uma revisão de literatura sobre os temas mais relevantes de suporte para o projeto, nomeadamente na otimização e melhoria contínua. Seguidamente é apresentado o Grupo Rangel, bem como a Rangel Distribuição e Logística, S.A., onde se enquadra o projeto e para se perceber o enquadramento e objetivo. A metodologia usada, caso de estudo, permitiu a aplicação de conceitos e ferramentas usados na literatura neste contexto, como ferramentas de otimização e melhoria continua como as melhores práticas de Kaizen-Lean. Na fase de diagnóstico do atual sistema, foi realizado um mapeamento de fluxo de processos e uma descrição detalhada do layout dos dois armazéns: Armazém de Produto Acabado (APA) e Armazém de Produto Acabado Externo (APAE), bem como todos os recursos, quer técnicos quer humanos necessários. Verificamos ao longo deste projeto várias limitações, inclusive limitações impostas pelo cliente, tal como não aprovar um estudo para um novo layout do armazém. Foi aprovado apenas a replicação do já existente. Com isto, depararam-se constrangimentos na gestão deste projeto. Os custos aumentaram significativamente, embora estes não sejam apresentados por questões de confidencialidade, principalmente com a necessidade de aquisição de novos equipamentos retráteis, e mais baterias para os mesmos, devido às grandes distâncias que irão ser percorridas. Finalmente foi projetado o sistema futuro, de acordo com as necessidades reais do cliente tendo em consideração a otimização de recursos e uma gestão magra (Lean Management). Foi desenvolvida a implementação da metodologia “Kaizen diário”, a dar início em 2016 juntamente com o novo projeto APAE. Com esta projeção foram identificados problemas e implicações no projeto, bem como possíveis melhorias.