13 resultados para Double chambered right ventricle
em Instituto Politécnico do Porto, Portugal
Resumo:
O documento em anexo encontra-se na versão post-print (versão corrigida pelo editor).
Resumo:
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between midstance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
Resumo:
Adhesive bonding as a joining or repair method has a wide application in many industries. Repairs with bonded patches are often carried out to re-establish the stiffness at critical regions or spots of corrosion and/or fatigue cracks. Single and double-strap repairs (SS and DS, respectively) are a viable option for repairing. For the SS repairs, a patch is adhesively-bonded on one of the structure faces. SS repairs are easy to execute, but the load eccentricity leads to peel peak stresses at the overlap edges. DS repairs involve the use of two patches, one on each face of the structure. These are more efficient than SS repairs, due to the doubling of the bonding area and suppression of the transverse deflection of the adherends. Shear stresses also become more uniform as a result of smaller differential straining. The experimental and Finite Element (FE) study presented here for strength prediction and design optimization of bonded repairs includes SS and DS solutions with different values of overlap length (LO). The examined values of LO include 10, 20 and 30 mm. The failure strengths of the SS and DS repairs were compared with FE results by using the Abaqus® FE software. A Cohesive Zone Model (CZM) with a triangular shape in pure tensile and shear modes, including the mixed-mode possibility for crack growth, was used to simulate fracture of the adhesive layer. A good agreement was found between the experiments and the FE simulations on the failure modes, elastic stiffness and strength of the repairs, showing the effectiveness and applicability of the proposed FE technique in predicting strength of bonded repairs. Furthermore, some optimization principles were proposed to repair structures with adhesively-bonded patches that will allow repair designers to effectively design bonded repairs.
Resumo:
This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.
Resumo:
In this work, an experimental study was performed on the influence of plug filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. The experimental programme includes repairs with different values of overlap length (LO=10, 20 and 30 mm), and with and without plug filling. The influence of the testing speed on the repairs strength is also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature, 50ºC and 80ºC. This will permit a comparative evaluation of the adhesive tested below and above the Glass Transition Temperature (Tg), established by the manufacturer at 67ºC. The global tendencies of the test results concerning the plug filling and overlap length analyses are interpreted from the fracture modes and typical stress distributions for bonded repairs. According to the results obtained from this work, design guidelines for repairing aluminium structures were recommended.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
Introdução: Por mais de uma década assumiu-se que o transverso abdominal/oblíquo interno (TrA/OI) se comportava como um ventre muscular único, pré-ativando-se bilateralmente de forma simultânea para aumentar a stiffness da coluna lombar, conferindo-lhe estabilidade segmentar durante o movimento de um dos membros superiores. À luz dos estudos atuais sabe-se que tal mecanismo não ocorre, uma vez que o TrA/OI apresenta uma ativação por mecanismo de feedforward predominantemente contralateral ao membro superior movido. Apesar de morfologicamente o TrA/OI do lado não-dominante ser mais hipertrofiado do que o do lado dominante, nada se sabe acerca da influência da dominância nos timings ativação do TrA/OI. Objectivos: Confirmar se o TrA/OI tem um timing de ativação assimétrico durante o movimento rápido de flexão do membro superior (MRMS). Pretende-se ainda avaliar se o timing de ativação do TrA/OI é influenciado pela dominância de lateralidade manual. Métodos: Efectuou-se um estudo observacional descritivo, transversal e duplamente cego com 32 atletas de futebol voluntários com membro superior direito dominante, colocando-os apenas num grupo. Procedeu-se à recolha do sinal eletromiográfico de forma a avaliar os timings de ativação do TrA/OI bilateralmente aquando dos movimentos rápidos de flexão de ambos os membros superiores, à vez. Todos os dados foram tratados estatisticamente com o programa SPSS, versão 20.0 para Mac OS, com um grau de significância de 0,05. Resultados: Verificaram-se diferenças nos timings de ativação dos TrA/OI direito e esquerdo durante os MRMS direito e esquerdo (Teste ANOVA medidas repetidas: F=291,087; p<0,001). O timing de ativação do TrA/OI direito – 29,15(13,15)ms – foi superior ao esquerdo – 4,71(17,32)ms – durante MRMS direito (Teste Post Hoc Bonferroni: p<0,001). O timing de ativação do TrA/OI esquerdo – 31,98(12,50)ms – foi superior ao direito – 12,20(17,40)ms – durante MRMS esquerdo (p<0,001). O timing de ativação do TrA/IO direito aquando do MRMS direito foi superior ao observado durante MRMS esquerdo (p<0,001). O contrário sucedeu em relação ao timing ativação do TrA/IO esquerdo (p<0,001). O timing de ativação do TrA/IO esquerdo no MRMS direito foi inferior ao do TrA/IO direito aquando do movimento com o membro esquerdo (p<0,001). O TrA/IO direito possuiu um timing de ativação no MRMS direito inferior ao do TrA/IO esquerdo aquando do movimento com o membro esquerdo (p<0,001). Conclusão: Através deste estudo pôde-se concluir que o TrA/OI contralateral ao MRMS apresenta um timing de ativação inferior ao ipsilateral e ainda que durante o MRMS dominante o TrA/OI esquerdo e direito apresentam um timing de ativação inferior ao ocorrido durante o MRMS não-dominante.
Resumo:
INTED2010, the 4th International Technology, Education and Development Conference was held in Valencia (Spain), on March 8, 9 and 10, 2010.
Resumo:
Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
Resumo:
Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
Resumo:
The calculation of fractional derivatives is an important topic in scientific research. While formal definitions are clear from the mathematical point of view, they pose limitations in applied sciences that have not been yet tackled. This paper addresses the problem of obtaining left and right side derivatives when adopting numerical approximations. The results reveal the relationship between the resulting distinct values for different fractional orders and types of signals.
Resumo:
Chronic Low Back Pain (CLBP) is a public health problem and older women have higher incidence of this symptom, which affect body balance, functional capacity and behavior. The purpose of this study was to verifying the effect of exercises with Nintendo Wii on CLBP, functional capacity and mood of elderly. Thirty older women (68 ± 4 years; 68 ± 12 kg; 154 ± 5 cm) with CLBP participated in this study. Elderly individuals were divided into a Control Exercise Group (n = 14) and an Experimental Wii Group (n = 16). Control Exercise Group did strength exercises and core training, while Experimental Wii Group did ones additionally to exercises with Wii. CLBP, balance, functional capacity and mood were assessed pre and post training by the numeric pain scale, Wii Balance Board, sit to stand test and Profile of Mood States, respectively. Training lasted eight weeks and sessions were performed three times weekly. MANOVA 2 x 2 showed no interaction on pain, siting, stand-up and mood (P = 0.53). However, there was significant difference within groups (P = 0.0001). ANOVA 2 x 2 showed no interaction for each variable (P > 0.05). However, there were significant differences within groups in these variables (P < 0.05). Tukey's post-hoc test showed significant difference in pain on both groups (P = 0.0001). Wilcoxon and Mann-Whitney tests identified no significant differences on balance (P > 0.01). Capacity to Sit improved only in Experimental Wii Group (P = 0.04). In conclusion, physical exercises with Nintendo Wii Fit Plus additional to strength and core training were effective only for sitting capacity, but effect size was small.
Resumo:
Introduction: Lesions at ipsilateral systems related to postural control at ipsilesional side, may justify the lower performance of stroke subjects during walking. Purpose: To analyse bilateral ankle antagonist coactivation during double-support in stroke subjects. Methods: Sixteen (8 females; 8 males) subjects with a first isquemic stroke, and twenty two controls (12 females; 10 males) participated in this study. The double support phase was assessed through ground reaction forces and electromyography of ankle muscles was assessed in both limbs. Results: Ipsilesional limb presented statistical significant differences from control when assuming specific roles during double support, being the tibialis anterior and soleus pair the one in which this atypical behavior was more pronounced. Conclusion: The ipsilesional limb presents a dysfunctional behavior when a higher postural control activity was demanded.