2 resultados para Diabetic neuropathy

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For treating chronic pain, a multifactorial condition, is needed a suitable diagnosis which allows the differentiation in its many components. Diabetic neuropathy is a worldwide disease with great impact in the modern society. Diabetes may leads to the production of reactive oxygen species that are associated to oxidative stress, which may be a key factor in the development of diabetic neuropathy. The main goal is to inquire a potential association between chronic pain, diabetic neuropathy and oxidative stress. Thus, was performed a meta-analysis that permitted the causal evaluation between oxidative stress and diabetic neuropathy, and, a pain evaluation was accomplished in a convenience sample using validated surveys – Brief Pain Inventory (BPI) and Douleur Neuropathique 4 (DN4). Through the meta-analysis it was possible evaluate oxidative stress biomarkers, such lipid peroxidation, superoxide dismutase and catalase activities, and reduced glutathione. 9 studies were selected and all were performed in mouse models. The levels of lipid peroxidation were increased in all the studies, however the levels of the other biomarkers were diminished in diabetic models comparatively to healthy controls. In the evaluation of convenience sample, 84 surveys were collected along the four seasons: summer, autumn, winter and spring. The pain complaints were described in terms of local, intensity, impact, relief by medication and its effect on daily activities using BPI questionnaire. The scores obtained in BPI indicate the presence of moderate to severe pain, with increased complaints in autumn and spring, and implications in daily activities, transversal to all groups. To determine the main features associated with neuropathic pain it was used DN4 questionnaire. The DN4 indicated the presence of nearly 50% of patients with neuropathic pain. The results suggest that being female, the increased age and being retired can influence chronic pain and neuropathic pain in patients. As main conclusions, it was possible to verify an association between oxidative stress, and neuropathic pain, and, also, that weather conditions may influence the pain complaints and its prevalence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. Methods Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS–α-SMA. Results There was a significant increase in urinary H2O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. Conclusions The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.