9 resultados para Design and Formative Studies of AIED Systems
em Instituto Politécnico do Porto, Portugal
Resumo:
Electrochemical oxidation of propanil in deuterated solutions was studied by cyclic, differential pulse, and square wave voltammetry using a glassy carbon microelectrode. The oxidation of propanil in deuterated acid solutions occurs at the nitrogen atom of the amide at a potential of +1.15 V vs Ag/ AgCl. It was also found that, under the experimental conditions used, protonation at the oxygen atom of propanil occurs, leading to the appearance of another species in solution which oxidizes at +0.60 V. The anodic peak found at +0.79 V vs Ag/AgCl in deuterated basic solutions is related to the presence of an anionic species in which a negative charge is on the nitrogen atom. The electrochemical data were confirmed by the identification of all the species formed in acidic and basic deuterated solutions by means of NMR spectroscopy. The results are supported by electrochemical and spectroscopic studies of acetanilide in deuterated solutions.
Resumo:
The goal of this study was to propose a new functional magnetic resonance imaging (fMRI) paradigm using a language-free adaptation of a 2-back working memory task to avoid cultural and educational bias. We additionally provide an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioural performances of healthy participants from those of individuals with working memory deficits. Ten healthy participants and nine patients presenting working memory (WM) deficits due to acquired brain injury (ABI) performed the developed task. To inspect whether the paradigm activates brain areas typically involved in visual working memory (VWM), brain activation of the healthy participants was assessed with fMRIs. To examine the task's capacity to discriminate behavioural data, performances of the healthy participants in the task were compared with those of ABI patients. Data were analysed with GLM-based random effects procedures and t-tests. We found an increase of the BOLD signal in the specialized areas of VWM. Concerning behavioural performances, healthy participants showed the predicted pattern of more hits, less omissions and a tendency for fewer false alarms, more self-corrected responses, and faster reaction times, when compared with subjects presenting WM impairments. The results suggest that this task activates brain areas involved in VWM and discriminates behavioural performances of clinical and non-clinical groups. It can thus be used as a research methodology for behavioural and neuroimaging studies of VWM in block-design paradigms.
Resumo:
The main goal of this research study was the removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using peanut hulls. This work was mainly focused on the following aspects: chemical characterization of the biosorbent, kinetic studies, study of the pH influence in mono-component systems, equilibrium isotherms and column studies, both in mono and tri-component systems, and with a real industrial effluent from the electroplating industry. The chemical characterization of peanut hulls showed a high cellulose (44.8%) and lignin (36.1%) content, which favours biosorption of metal cations. The kinetic studies performed indicate that most of the sorption occurs in the first 30 min for all systems. In general, a pseudo-second order kinetics was followed, both in mono and tri-component systems. The equilibrium isotherms were better described by Freundlich model in all systems. Peanut hulls showed higher affinity for copper than for nickel and zinc when they are both present. The pH value between 5 and 6 was the most favourable for all systems. The sorbent capacity in column was 0.028 and 0.025 mmol g-1 for copper, respectively in mono and tri-component systems. A decrease of capacity for copper (50%) was observed when dealing with the real effluent. The Yoon-Nelson, Thomas and Yan’s models were fitted to the experimental data, being the latter the best fit.
Resumo:
Our day-to-day life is dependent on several embedded devices, and in the near future, many more objects will have computation and communication capabilities enabling an Internet of Things. Correspondingly, with an increase in the interaction of these devices around us, developing novel applications is set to become challenging with current software infrastructures. In this paper, we argue that a new paradigm for operating systems needs to be conceptualized to provide aconducive base for application development on Cyber-physical systems. We demonstrate its need and importance using a few use-case scenarios and provide the design principles behind, and an architecture of a co-operating system or CoS that can serve as an example of this new paradigm.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
Proceedings of the 10th Mediterranean Conference on Control and Automation - MED2002 Lisbon, Portugal, July 9-12, 2002
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
The inter-disciplinarity of information systems, applied discipline and activity of design, and the study from different paradigms perspectives explains the diversity of problems addressed. The context is broad and includes important issues beyond technology, as the application, use, effectiveness, efficiency and their organizational and social impacts. In design science, the research interest is in contributing to the improvement of the processes of the design activity itself. The relevance of research in design science is associated with the result obtained for the improvement of living conditions in organizational, inter-organizational and Society contexts. In the research whose results are artifacts, the adoption of design research as a process of research is crucial to ensure discipline, rigor and transparency. Based on a literature review, this paper clarifies the terms of design science and design research. This is the main motivation for presenting this paper, determinant for the phase in research in technologies and information systems which are the three research projects presented. As a result the three projects are discussed in relation to the concepts of design science and design research.