5 resultados para Data center

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). The physical parameters of the data center (such as power, temperature, pressure, humidity) are tightly coupled with computations, even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in a cloud infrastructure hosted in the data center. In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolutionof the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center andwith them, _and opportunities to optimize energy consumption. Havinga high resolution picture of the data center conditions, also enables minimizing local hotspots, perform more accurate predictive maintenance (pending failures in cooling and other infrastructure equipment can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho enquadra-se na temática de segurança contra incêndio em edifícios e consiste num estudo de caso de projeto de deteção e extinção de incêndio num Data Center. Os objetivos deste trabalho resumem-se à realização de um estudo sobre o estado da arte da extinção e deteção automática de incêndio, ao desenvolvimento de uma ferramenta de software de apoio a projetos de extinção por agentes gasosos, como também à realização de um estudo e uma análise da proteção contra incêndios em Data Centers. Por último foi efetuado um estudo de caso. São abordados os conceitos de fogo e de incêndio, em que um estudo teórico à temática foi desenvolvido, descrevendo de que forma pode o fogo ser originado e respetivas consequências. Os regulamentos nacionais relativos à Segurança Contra Incêndios em Edifícios (SCIE) são igualmente abordados, com especial foco nos Sistemas Automáticos de Deteção de Incêndio (SADI) e nos Sistemas Automáticos de Extinção de Incêndio (SAEI), as normas nacionais e internacionais relativas a esta temática também são mencionadas. Pelo facto de serem muito relevantes para o desenvolvimento deste trabalho, os sistemas de deteção de incêndio são exaustivamente abordados, mencionando características de equipamentos de deteção, técnicas mais utilizadas como também quais os aspetos a ter em consideração no dimensionamento de um SADI. Quanto aos meios de extinção de incêndio foram mencionados quais os mais utilizados atualmente, as suas vantagens e a que tipo de fogo se aplicam, com especial destaque para os SAEI com utilização de gases inertes, em que foi descrito como deve ser dimensionado um sistema deste tipo. Foi também efetuada a caracterização dos Data Centers para que seja possível entender quais as suas funcionalidades, a importância da sua existência e os aspetos gerais de uma proteção contra incêndio nestas instalações. Por último, um estudo de caso foi desenvolvido, um SADI foi projetado juntamente com um SAEI que utiliza azoto como gás de extinção. As escolhas e os sistemas escolhidos foram devidamente justificados, tendo em conta os regulamentos e normas em vigor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

São muitas as organizações que por todo o mundo possuem instalações deste tipo, em Portugal temos o exemplo da Portugal Telecom que recentemente inaugurou o seu Data Center na Covilhã. O desenvolvimento de um Data Center exige assim um projeto muito cuidado, o qual entre outros aspetos deverá garantir a segurança da informação e das próprias instalações, nomeadamente no que se refere à segurança contra incêndio.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%.