2 resultados para Data Structures
em Instituto Politécnico do Porto, Portugal
Resumo:
Nos últimos anos, o processo de ensino e aprendizagem tem sofrido significativas alterações graças ao aparecimento da Internet. Novas ferramentas para apoio ao ensino têm surgido, nas quais se destacam os laboratórios remotos. Atualmente, muitas instituições de ensino disponibilizam laboratórios remotos nos seus cursos, que permitem, a professores e alunos, a realização de experiências reais através da Internet. Estes são implementados por diferentes arquiteturas e infraestruturas, suportados por vários módulos de laboratório acessíveis remotamente (e.g. instrumentos de medição). No entanto, a sua inclusão no ensino é ainda deficitária, devido: i) à falta de meios e competências técnicas das instituições de ensino para os desenvolverem, ii) à dificuldade na partilha dos módulos de laboratório por diferentes infraestruturas e, iii) à reduzida capacidade de os reconfigurar com esses módulos. Para ultrapassar estas limitações, foi idealizado e desenvolvido no âmbito de um trabalho de doutoramento [1] um protótipo, cuja arquitetura é baseada na norma IEEE 1451.0 e na tecnologia de FPGAs. Para além de garantir o desenvolvimento e o acesso de forma normalizada a um laboratório remoto, este protótipo promove ainda a partilha de módulos de laboratório por diferentes infraestruturas. Nesse trabalho explorou-se a capacidade de reconfiguração de FPGAs para embutir na infraestrutura do laboratório vários módulos, todos descritos em ficheiros, utilizando linguagens de descrição de hardware estruturados de acordo com a norma IEEE 1451.0. A definição desses módulos obriga à criação de estruturas de dados binárias (Transducer Electronic Data Sheets, TEDSs), bem como de outros ficheiros que possibilitam a sua interligação com a infraestrutura do laboratório. No entanto, a criação destes ficheiros é bastante complexa, uma vez que exige a realização de vários cálculos e conversões. Tendo em consideração essa mesma complexidade, esta dissertação descreve o desenvolvimento de uma aplicação Web para leitura e escrita dos TEDSs. Para além de um estudo sobre os laboratórios remotos, é efetuada uma descrição da norma IEEE 1451.0, com particular atenção para a sua arquitetura e para a estrutura dos diferentes TEDSs. Com o objetivo de enquadrar a aplicação desenvolvida, efetua-se ainda uma breve apresentação de um protótipo de um laboratório remoto reconfigurável, cuja reconfiguração é apoiada por esta aplicação. Por fim, é descrita a verificação da aplicação Web, de forma a tirar conclusões sobre o seu contributo para a simplificação dessa reconfiguração.
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.