11 resultados para Copper-manganese spinel
em Instituto Politécnico do Porto, Portugal
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
As tintas utilizadas nas actividades didácticas possuem na sua composição ingredientes que dada a sua natureza, modo de fabrico e de utilização, podem representar um risco para a saúde das crianças. Neste âmbito, procurou-se com este estudo avaliar a qualidade química e microbiológica das tintas utilizadas pelas crianças no ensino pré-escolar. Vinte e nove amostras de tintas, incluindo guaches, tintas de águas, digitintas e tintas para pinturas faciais foram recolhidas em oito estabelecimentos de ensino, nomeadamente, Jardins de Infância, do conselho de Vila Nova de Gaia. A avaliação microbiológica envolveu não só a determinação da concentração microbiana presente nas amostras, como também, a avaliação da estabilidade microbiana nas tintas das espécies S.aureus e E.coli. Na avaliação química procedeu-se à determinação da concentração dos metais chumbo (Pb), cádmio (Cd), crómio (Cr), cobalto (Co), níquel (Nq), manganês (Mn), cobre (Cu) e zinco (Zn) quer em algumas das amostras recolhidas nos estabelecimentos de ensino, quer em tintas adquiridas em três estabelecimentos comerciais. Os resultados obtidos da avaliação microbiológica revelam uma contaminação estática na generalidade das tintas. Três amostras de tintas apresentaram ainda elevada contaminação por fungos, nomeadamente Aspergillus spp. e Trichophyton spp. Da avaliação da estabilidade microbiana das espécies S.aureus e E.coli observou-se uma sensibilidade das mesmas às tintas, sendo evidenciado, em alguns casos, um decrescimento da concentração ao longo do tempo de exposição, e noutros, uma sensibilidade imediata. A espécie S.aureus revelou, contudo, maior capacidade de resistência que a E.coli. Os resultados obtidos da avaliação química revelaram a presença de Cr em todas as amostras, registando as tintas adquiridas em estabelecimentos comerciais concentrações mais elevadas para este metal. Os metais Cu e Zn foram detectados, em algumas amostras de tintas artísticas, em concentrações acima dos valores limites. Nas tintas para a cara foram encontrados os metais Pb, Cd, Cr e Nq, cuja utilização é interdita nestes produtos. O conhecimento das características químicas e microbiológicas das tintas utilizadas por crianças do ensino pré-escolar revelou-se de grande importância, nomeadamente, para a determinação dos riscos a que este grupo de indivíduos pode estar exposto no seu dia-a-dia quando utilizam estes produtos.
Resumo:
Actualmente tem-se verificado um grande aumento na procura e a utilização de produtos naturais contendo extractos de algas, com fins medicinais, sendo cada vez maior a diversidade de oferta desses produtos, vendidos em ervanária e afins. A bibliografia tem mostrado que as algas têm capacidade de acumulação de metais pesados. As algas, sendo organismos aquáticos, estão sujeitas a contaminações dos locais (não identificados) de onde provêm. O controlo e fiscalização para estes produtos é praticamente inexistente. O objectivo deste projecto foi o desenvolvimento de metodologias analíticas com vista à quantificação de metais em infusões de chás e ervas aromáticas. Foram analisadas 9 amostras: uma de chá verde, uma de chá preto, uma infusão de lima, uma de camomila, uma mistura de chá com ervas e quatro misturas contendo algas. A espectrofotometria de absorção atómica é o método de referência para a análise de metais. Neste trabalho foi utilizado um espectrofotómetro de absorção atómica com fonte de radiação contínua e monocromador de alta resolução. Sendo esta uma tecnologia inovadora foi necessário desenvolver metodologias para os métodos de análise. A atomização em chama foi a técnica utilizada para a quantificação do cálcio, potássio, magnésio, manganês e sódio. A atomização electrotérmica foi usada para o cádmio, cobalto, crómio, cobre, níquel e chumbo. Tendo em conta os limites legislados (Decreto-Lei Nº306/2007 de 27 de Agosto) obtiveram-se teores preocupantes para o níquel (iguais ou superiores ao limite legislado) em todas as amostras analisadas e para o manganês em duas das amostras (chá verde e chá preto). Todas as amostras contendo algas apresentaram teores de Ca, Mg e Na superiores aos das restantes. Para os restantes elementos não foi possível relacionar as concentrações com a composição das infusões, em particular a presença de algas.
Resumo:
The main goal of this research study was the removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using peanut hulls. This work was mainly focused on the following aspects: chemical characterization of the biosorbent, kinetic studies, study of the pH influence in mono-component systems, equilibrium isotherms and column studies, both in mono and tri-component systems, and with a real industrial effluent from the electroplating industry. The chemical characterization of peanut hulls showed a high cellulose (44.8%) and lignin (36.1%) content, which favours biosorption of metal cations. The kinetic studies performed indicate that most of the sorption occurs in the first 30 min for all systems. In general, a pseudo-second order kinetics was followed, both in mono and tri-component systems. The equilibrium isotherms were better described by Freundlich model in all systems. Peanut hulls showed higher affinity for copper than for nickel and zinc when they are both present. The pH value between 5 and 6 was the most favourable for all systems. The sorbent capacity in column was 0.028 and 0.025 mmol g-1 for copper, respectively in mono and tri-component systems. A decrease of capacity for copper (50%) was observed when dealing with the real effluent. The Yoon-Nelson, Thomas and Yan’s models were fitted to the experimental data, being the latter the best fit.
Resumo:
Chromium copper arsenate(CCA)was used for the protection of wood building material suntil the restriction by EPA in2002. During a short period of time 14–24h,a comparative nephrotoxicity study was performed regarding the effects of CCA and its compounds per se. Histopathological and histochemical features were correlated with the concentration of the total arsenic and chromium in mice kidney. Animals were subcutaneously injected with CCA(7.2mg/kg arsenic and 10.2mg/kg chromium per body weight), CrO3 (10.2 mg/kg),As2O5 (7.2 mg/kg)andNaCl(0.9%) per se. The histopathological examination of the renal sections evidenced acute tubular necrosis in the groups of animals exposed to CCA(in both periods of time). Although the same contents of pentavalent arsenic and hexavalent chromium were injected in treated animals with CCA and with the prepared solutions of As2O5 and CrO3, the arsenic concentration on kidneys of CCA-exposed animals was much higher than those in animals exposed to As2O5 (32- and28-fold higher at 14 and 24h,respectively). However,the elimination of chromium seems to occur similarly in the kidneys of animals treated with CCA and CrO3 per se. Interactions among the components of CCA result in a marked decrease of the ability of kidney to eliminate simultaneously both analytes.The nephrotoxicity of CCA was higher than its components per se, evidencing a possible synergetic effect.
Resumo:
This research work aims to study the use of peanut hulls, an agricultural and food industry waste, for copper and lead removal through equilibrium and kinetic parameters evaluation. Equilibrium batch studies were performed in a batch adsorber. The influence of initial pH was evaluated (3–5) and it was selected between 4.0 and 4.5. The maximum sorption capacities obtained for the Langmuir model were 0.21 ± 0.03 and 0.18 ± 0.02 mmol/g, respectively for copper and lead. In bi-component systems, competitive sorption of copper and lead was verified, the total amount adsorbed being around 0.21 mmol of metal per gram of material in both mono and bi-component systems. In the kinetic studies equilibrium was reached after 200 min contact time using a 400 rpm stirring rate, achieving 78% and 58% removal, in mono-component system, for copper and lead respectively. Their removal follows a pseudo-second-order kinetics. These studies show that most of the metals removal occurred in the first 20 min of contact, which shows a good uptake rate in all systems.
Resumo:
Chromated copper arsenate (CCA) was widespread used as a chemical wood preservative with application in the construction of playground equipment, fences, jetties, and naval. Environmental protection agency (EPA) had limited the use of CCA-treated wood on 2002, due to probable implications on both human and environmental health. Although this fact, several industries pursue the use of this product within their manufactories. In addition, the durability of this wood for 60 years, makes these treated products an hazard to the public health. In the present work, studies were explored exposing mice to CCA, during 14, 24, 48, and 96 h for the assessment of acute toxicity of CCA. Kidney and liver were removed, prepared for histology and for metalloid, and copper content evaluation by high resolution inductively coupled plasma mass spectroscopy. The histological results evidenced apparently normal structures for control animals and group exposed to As2O5. On the contrary, the renal sections of the animals treated with CCA revealed epithelium cells desquamation, hyaline, and granular casts in renal tubules lumen. Furthermore, high levels of arsenic were detected in the kidney of animals treated with CCA over 14 and 48 h, being significantly greater than controls. Although this approach underlines the potential hazard of CCA on some vital organs, further testing may be required to establish the impacts on other functions.
Resumo:
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce’s macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce’s essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products.
Resumo:
The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.
Resumo:
Fresh-cut vegetables are a successful convenient healthy food. Nowadays, the presence of new varieties of minimally processed vegetables in the market is common in response to the consumers demand for new flavours and high quality products. Within the most recent fresh-cut products are the aromatic herbs. In this work, the objective was to evaluate the nutritional quality and stability of four fresh-cut aromatic herbs. Several physicochemical quality characteristics (colour, pH, total soluble solids, and total titratable acidity) were monitored in fresh-cut chives, coriander, spearmint and parsley leaves, stored under refrigeration (3 ± 1 ºC) during 10 days. Their nutritional composition was determined, including mineral composition (phosphorous, potassium, sodium, calcium, magnesium, iron, zinc, manganese and copper) and fat- and water-soluble vitamin contents. Total soluble phenolics, flavonoids and the antioxidant capacity were determined by spectrophotometric methods. The aromatic herbs kept their fresh appearance during the storage, maintaining their colour throughout shelf-life. Their macronutrient composition and mineral content were stable during storage. Coriander had the highest mineral and fatsoluble vitamin content, while spearmint showed the best scores in the phenolic, flavonoid and antioxidant capacity assays. Vitamins and antioxidant capacity showed some variation during storage, with a differential behaviour of each compound according to the sample.
Resumo:
The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol–Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol–Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol–gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 1010 M, corresponding to 0.75 mg L1 . It showed linear responses in the range of 7.7 1010 to 1.9 109 M of MC-LR (corresponding to 0.77–2.00 mg L1 ), thus including the limiting value for MC-LR in waters (1.0 mg L1 ). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl) showed limited interference while aluminium (Al3+), ammonium (NH4 + ), magnesium (Mg2+), manganese (Mn2+), sodium (Na+ ), and sulfate (SO4 2) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.