42 resultados para Coordinated bidding strategies
em Instituto Politécnico do Porto, Portugal
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM provides several dynamic strategies for agents’ behavior. This paper presents a method that aims to provide market players with strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible bids. These bids are defined accordingly to the cost function that each producer presents.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
The very particular characteristics of electricity markets, require deep studies of the interactions between the involved players. MASCEM is a market simulator developed to allow studying electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is implemented as a multiagent system, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. This paper also presents a methodology to define players’ models based on the historic of their past actions, interpreting how their choices are affected by past experience, and competition.
Resumo:
Int’l J. of Information and Communication Technology Education, 3(2), 1-14, April-June 2007
Resumo:
This paper presents a Multi-Agent Market simulator designed for developing new agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. This tool studies negotiations based on different market mechanisms and, time and behavior dependent strategies. The results of the negotiations between agents are analyzed by data mining algorithms in order to extract rules that give agents feedback to improve their strategies. The system also includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agent reactions.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
Metalearning is a subfield of machine learning with special pro-pensity for dynamic and complex environments, from which it is difficult to extract predictable knowledge. The field of study of this work is the electricity market, which due to the restructuring that recently took place, became an especially complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotia-tion entities. The proposed metalearner takes advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that pro-vides decision support to electricity markets’ participating players. Using the outputs of each different strategy as inputs, the metalearner creates its own output, considering each strategy with a different weight, depending on its individual quality of performance. The results of the proposed meth-od are studied and analyzed using MASCEM - a multi-agent electricity market simulator that models market players and simulates their operation in the market. This simulator provides the chance to test the metalearner in scenarios based on real electricity market´s data.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simu-lator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM pro-vides several dynamic strategies for agents’ behaviour. This paper presents a method that aims to provide market players strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses an auxiliary forecasting tool, e.g. an Artificial Neural Net-work, to predict the electricity market prices, and analyses its forecasting error patterns. Through the recognition of such patterns occurrence, the method predicts the expected error for the next forecast, and uses it to adapt the actual forecast. The goal is to approximate the forecast to the real value, reducing the forecasting error.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
Introduction: The present paper deals with the issue of the increasing usage of corporation mergers and acquisitions strategies within pharmaceutical industry environment. The aim is to identify the triggers of such business phenomenon and the immediate impact on the financial outcome of two powerful biopharmaceutical corporations: Pfizer and GlaxoSmithKline, which have been sampled due to their successful approach of the tactics in question. Materials and Methods: In order to create an overview of the development steps through mergers and acquisitions, the historical data of the two corporations has been consulted, from their official websites. The most relevant events were then associated with adequate information from the financial reports and statements of the two corporations indulged by web-based financial data providers. Results and Discussions: In the past few decades Pfizer and GlaxoSmithKline have purchased or merged with various companies in order to monopolize new markets, diversify products and services portfolios, survive and surpass competitors. The consequences proved to be positive although this approach implies certain capital availability. Conclusions: Results reveal the fact that, as far as the two sampled companies are concerned, acquisitions and mergers are reactions at the pressure of the highly competitive environment. Moreover, the continuous diversification of the market’s needs is also a consistent motive. However, the prevalence and the eminence of mergers and acquisition strategies are conditioned by the tender offer, the announcer’s caliber, research and development status and further other factors determined by the internal and external actors of the market.
Resumo:
In the present paper we will consider strategies of innovation, risk and proactivity as entre/ intrapreneurship strategies. This study was done in a Portuguese and in a Polish region. In Portugal the region was Vale do Sousa, located in the northern Portugal. The Polish region was Lublin Voivodeship and it is situated in the south-eastern part of the country. The study focused on Industrial and Construction sectors. In order to get a valid sample, a group of 251 firms were analysed in Portugal, and 215 in Poland. However, the minimum sample size in Poland should be 323. Since this is a work in progress, we are aiming for this number of questionnaires. Each strategy was analysed individually for both regions and the results pointed to a lack of culture of entrepreneurship in firms’ management. Only Proactivity presented a positive result in firms’ management. Polish firms tend to be more innovative and more risk takers, while in proactivity Portuguese ones present a slightly higher result. Combining the strategy results, it was possible to identify that 61.2% of Portuguese firms present a low level of entrepreneurship, while 60% of Polish firms present a moderate level. Considering intrapreneurship good levels, while Portugal account for 5.2% this figure is 19.1% in Poland.
Resumo:
The goal of the present paper is to analyse the classic entrepreneurship strategies (Innovation, Risk and Proactivity) in small and medium-sized businesses. However as presented in the title, the study will go further by comparing the results of those strategies in familiar and nonfamiliar businesses. This study was carried on in construction and industry sectors, in the region of Vale do Sousa, in the north of Portugal. In order to classify businesses as familiar or non-familiar types two criterion were adopted: (1) Management Control, (2) Family Employability. On the opposite to some studies that present a larger percentage of familiar businesses in national and European entrepreneurial fabric, the criterion used leaded to a larger number of non-familiar businesses (53%). The results showed that in general SMEs in this region are not following entrepreneurship strategies. Analysing the entire sample without a separation of businesses by nature (familiar/non-familiar) only proactivity showed to be more present in the managerial decisions. There is a lack of innovation and risk culture. Comparing the groups only on proactivity tests was possible to verify some differences. It was concluded that non-familiar businesses are more proactive than familiar ones. Between those groups there are no statistical differences on the means of the variables innovation and risk. At the same time some tests were conducted to test the differences on the variable entrepreneurship. The results were similar to innovation and risk strategies: There are no significant differences on entrepreneurship between these groups of businesses.
Resumo:
Mestrado em Engenharia Informática
Resumo:
We study a fractional model for malaria transmission under control strategies.Weconsider the integer order model proposed by Chiyaka et al. (2008) in [15] and modify it to become a fractional order model. We study numerically the model for variation of the values of the fractional derivative and of the parameter that models personal protection, b. From observation of the figures we conclude that as b is increased from 0 to 1 there is a corresponding decrease in the number of infectious humans and infectious mosquitoes, for all values of α. This means that this result is invariant for variation of fractional derivative, in the values tested. These results are in agreement with those obtained in Chiyaka et al.(2008) [15] for α = 1.0 and suggest that our fractional model is epidemiologically wellposed.