20 resultados para Controlled fusion
em Instituto Politécnico do Porto, Portugal
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Objective: The purpose of this study was to investigate effects of different manual techniques on cervical ranges of 17 motion and pressure pain sensitivity in subjects with latent trigger point of the upper trapezius muscle. 18 Methods: One hundred seventeen volunteers, with a unilateral latent trigger point on upper trapezius due to computer 19 work, were randomly divided into 5 groups: ischemic compression (IC) group (n = 24); passive stretching group (n = 20 23); muscle energy technique group (n = 23); and 2 control groups, wait-and-see group (n = 25) and placebo group 21 (n = 22). Cervical spine range of movement was measured using a cervical range of motion instrument as well as 22 pressure pain sensitivity by means of an algometer and a visual analog scale. Outcomes were assessed pretreatment, 23 immediately, and 24 hours after the intervention and 1 week later by a blind researcher. A 4 × 5 mixed repeated- 24 measures analysis of variance was used to examine the effects of the intervention and Cohen d coefficient was used. 25 Results: A group-by-time interaction was detected in all variables (P b .01), except contralateral rotation. The 26 immediate effect sizes of the contralateral flexion, ipsilateral rotation, and pressure pain threshold were large for 3 27 experimental groups. Nevertheless, after 24 hours and 1 week, only IC group maintained the effect size. 28 Conclusions: Manual techniques on upper trapezius with latent trigger point seemed to improve the cervical range of 29 motion and the pressure pain sensitivity. These effects persist after 1 week in the IC group. (J Manipulative Physiol 301 Ther 2013;xx:1-10)
Resumo:
Background: In Portugal, the routine clinical practice of speech and language therapists (SLTs) in treating children with all types of speech sound disorder (SSD) continues to be articulation therapy (AT). There is limited use of phonological therapy (PT) or phonological awareness training in Portugal. Additionally, at an international level there is a focus on collecting information on and differentiating between the effectiveness of PT and AT for children with different types of phonologically based SSD, as well as on the role of phonological awareness in remediating SSD. It is important to collect more evidence for the most effective and efficient type of intervention approach for different SSDs and for these data to be collected from diverse linguistic and cultural perspectives. Aims: To evaluate the effectiveness of a PT and AT approach for treatment of 14 Portuguese children, aged 4.0–6.7 years, with a phonologically based SSD. Methods & Procedures: The children were randomly assigned to one of the two treatment approaches (seven children in each group). All children were treated by the same SLT, blind to the aims of the study, over three blocks of a total of 25 weekly sessions of intervention. Outcome measures of phonological ability (percentage of consonants correct (PCC), percentage occurrence of different phonological processes and phonetic inventory) were taken before and after intervention. A qualitative assessment of intervention effectiveness from the perspective of the parents of participants was included. Outcomes & Results: Both treatments were effective in improving the participants’ speech, with the children receiving PT showing a more significant improvement in PCC score than those receiving the AT. Children in the PT group also showed greater generalization to untreated words than those receiving AT. Parents reported both intervention approaches to be as effective in improving their children’s speech. Conclusions & Implications: The PT (combination of expressive phonological tasks, phonological awareness, listening and discrimination activities) proved to be an effective integrated method of improving phonological SSD in children. These findings provide some evidence for Portuguese SLTs to employ PT with children with phonologically based SSD
Resumo:
This paper proposes a new architecture targeting real-time and reliable Distributed Computer-Controlled Systems (DCCS). This architecture provides a structured approach for the integration of soft and/or hard real-time applications with Commercial O -The-Shelf (COTS) components. The Timely Computing Base model is used as the reference model to deal with the heterogeneity of system components with respect to guaranteeing the timeliness of applications. The reliability and availability requirements of hard real-time applications are guaranteed by a software-based fault-tolerance approach.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.
Resumo:
In this paper, we analyse the ability of P-NET [1] fieldbus to cope with the timing requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events should be made available within a maximum bound time. The main objective of this work is to analyse how the network access and queueing delays, imposed by P-NET’s virtual token Medium Access Control (MAC) mechanism, affect the realtime behaviour of the supported DCCS.
Resumo:
Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols.
Resumo:
Knowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables, nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
Nowadays there is an increase of location-aware mobile applications. However, these applications only retrieve location with a mobile device's GPS chip. This means that in indoor or in more dense environments these applications don't work properly. To provide location information everywhere a pedestrian Inertial Navigation System (INS) is typically used, but these systems can have a large estimation error since, in order to turn the system wearable, they use low-cost and low-power sensors. In this work a pedestrian INS is proposed, where force sensors were included to combine with the accelerometer data in order to have a better detection of the stance phase of the human gait cycle, which leads to improvements in location estimation. Besides sensor fusion an information fusion architecture is proposed, based on the information from GPS and several inertial units placed on the pedestrian body, that will be used to learn the pedestrian gait behavior to correct, in real-time, the inertial sensors errors, thus improving location estimation.
Resumo:
Background: Mammography is considered the best imaging technique for breast cancer screening, and the radiographer plays an important role in its performance. Therefore, continuing education is critical to improving the performance of these professionals and thus providing better health care services. Objective: Our goal was to develop an e-learning course on breast imaging for radiographers, assessing its efficacy , effectiveness, and user satisfaction. Methods: A stratified randomized controlled trial was performed with radiographers and radiology students who already had mammography training, using pre- and post-knowledge tests, and satisfaction questionnaires. The primary outcome was the improvement in test results (percentage of correct answers), using intention-to-treat and per-protocol analysis. Results: A total of 54 participants were assigned to the intervention (20 students plus 34 radiographers) with 53 controls (19+34). The intervention was completed by 40 participants (11+29), with 4 (2+2) discontinued interventions, and 10 (7+3) lost to follow-up. Differences in the primary outcome were found between intervention and control: 21 versus 4 percentage points (pp), P<.001. Stratified analysis showed effect in radiographers (23 pp vs 4 pp; P=.004) but was unclear in students (18 pp vs 5 pp; P=.098). Nonetheless, differences in students’ posttest results were found (88% vs 63%; P=.003), which were absent in pretest (63% vs 63%; P=.106). The per-protocol analysis showed a higher effect (26 pp vs 2 pp; P<.001), both in students (25 pp vs 3 pp; P=.004) and radiographers (27 pp vs 2 pp; P<.001). Overall, 85% were satisfied with the course, and 88% considered it successful. Conclusions: This e-learning course is effective, especially for radiographers, which highlights the need for continuing education.
Resumo:
Objectives: Coronary artery disease are associated with decreased levels of physical activity, contributing to increases in abdominal fat and consequently the metabolic risk. The use of microcurrents is an innovative and effective method to increase lipolytic rate of abdominal adipocytes. This study aims to investigate the effects of microcurrents with a homebased exercise program on total, subcutaneous and visceral abdominal adipose tissue in subjects with coronary artery disease. Methods: This controlled trial included 44 subjects with myocardial infarction, randomly divided into Intervention Group 1 (IG1; n = 16), Intervention Group 2 (IG2; n = 12) and Control Group (CG; n = 16). IG1 performed a specific exercise program at home during 8 weeks, and IG2 additionally used microcurrents on the abdominal region before the exercise program. All groups were subjected to health education sessions. Computed Tomography was used to evaluate abdominal, subcutaneous and visceral fat, accelerometers to measure habitual physical activity and the semiquantitative Food Frequency Questionnaire for dietary intake. Results: After 8 weeks, IG2 showed a significantly decreased in subcutaneous fat (p ≤ 0.05) when compared to CG. Concerning visceral fat, both intervention groups showed a significant decrease in comparison to the CG (p ≤ 0.05). No significant changes were found between groups on dietary intake and habitual physical activity, except for sedentary activity that decreased significantly in IG2 in comparison with CG (p ≤ 0.05). Conclusions: This specific exercise program showed improvements in visceral fat in individuals with coronary artery disease. Microcurrent therapy associated with a home-based exercise program suggested a decreased in subcutaneous abdominal fat.
Resumo:
Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.