46 resultados para Context-based
em Instituto Politécnico do Porto, Portugal
Resumo:
23rd SPACE AGM and Conference from 9 to 12 May 2012 Conference theme: The Role of Professional Higher Education: Responsibility and Reflection Venue: Mikkeli University of Applied Sciences, Mikkeli, Finland
Resumo:
The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.
Resumo:
Human Computer Interaction (HCl) is to interaction between computers and each person. And context-aware (CA) is very important one of HCI composition. In particular, if there are sequential or continuous tasks between users and devices, among users, and among devices etc, it is important to decide the next action using right CA. And to take perfect decision we have to get together all CA into a structure. We define that structure is Context-Aware Matrix (CAM) in this article. However to make exact decision is too hard for some problems like low accuracy, overhead and bad context by attacker etc. Many researcher has been studying to solve these problems. Moreover, still it has weak point HCI using in safety. In this Article, we propose CAM making include best selecting Server in each area. As a result, moving users could be taken the best way.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
IEEE International Conference on Pervasive Computing and Communications (PerCom). 23 to 26, Mar, 2015, PhD Forum. Saint Louis, U.S.A..
Resumo:
In the context of the Bologna Declaration a change is taking place in the teaching/learning paradigm. From teaching-centered education, which emphasizes the acquisition and transmission of knowledge, we now speak of learning-centered education, which is more demanding for students. This paradigm promotes a continuum of lifelong learning, where the individual needs to be able to handle knowledge, to select what is appropriate for a particular context, to learn permanently and to understand how to learn in new and rapidly changing situations. One attempt to face these challenges has been the experience of ISCAP regarding the teaching/learning of accounting in the course Managerial Simulation. This paper describes the process of teaching, learning and assessment in an action-based learning environment. After a brief general framework that focuses on education objectives, we report the strengths and limitations of this teaching/learning tool. We conclude with some lessons from the implementation of the project.
Resumo:
Link do editor: http://www.igi-global.com/chapter/role-lifelong-learning-creation-european/13314
Resumo:
The dominant discourse in education and training policies, at the turn of the millennium, was on lifelong learning (LLL) in the context of a knowledge-based society. As Green points (2002, pp. 611-612) several factors contribute to this global trend: The demographic change: In most advanced countries, the average age of the population is increasing, as people live longer; The effects of globalisation: Including both economic restructuring and cultural change which have impacts on the world of education; Global economic restructuring: Which causes, for example, a more intense demand for a higher order of skills; the intensified economic competition, forcing a wave of restructuring and creating enormous pressure to train and retrain the workforce In parallel, the “significance of the international division of labour cannot be underestimated for higher education”, as pointed out by Jarvis (1999, p. 250). This author goes on to argue that globalisation has exacerbated differentiation in the labour market, with the First World converting faster to a knowledge economy and a service society, while a great deal of the actual manufacturing is done elsewhere.
Resumo:
Power systems have been suffering huge changes mainly due to the substantial increase of distributed generation and to the operation in competitive environments. Virtual power players can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Resource management gains an increasing relevance in this competitive context, while demand side active role provides managers with increased demand elasticity. This makes demand response use more interesting and flexible, giving rise to a wide range of new opportunities.This paper proposes a methodology for managing demand response programs in the scope of virtual power players. The proposed method is based on the calculation of locational marginal prices (LMP). The evaluation of the impact of using demand response specific programs on the LMP value supports the manager decision concerning demand response use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus network with intensive use of distributed generation.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
This paper addresses the problem of energy resources management using modern metaheuristics approaches, namely Particle Swarm Optimization (PSO), New Particle Swarm Optimization (NPSO) and Evolutionary Particle Swarm Optimization (EPSO). The addressed problem in this research paper is intended for aggregators’ use operating in a smart grid context, dealing with Distributed Generation (DG), and gridable vehicles intelligently managed on a multi-period basis according to its users’ profiles and requirements. The aggregator can also purchase additional energy from external suppliers. The paper includes a case study considering a 30 kV distribution network with one substation, 180 buses and 90 load points. The distribution network in the case study considers intense penetration of DG, including 116 units from several technologies, and one external supplier. A scenario of 6000 EVs for the given network is simulated during 24 periods, corresponding to one day. The results of the application of the PSO approaches to this case study are discussed deep in the paper.
Resumo:
The operation of power systems in a Smart Grid (SG) context brings new opportunities to consumers as active players, in order to fully reach the SG advantages. In this context, concepts as smart homes or smart buildings are promising approaches to perform the optimization of the consumption, while reducing the electricity costs. This paper proposes an intelligent methodology to support the consumption optimization of an industrial consumer, which has a Combined Heat and Power (CHP) facility. A SCADA (Supervisory Control and Data Acquisition) system developed by the authors is used to support the implementation of the proposed methodology. An optimization algorithm implemented in the system in order to perform the determination of the optimal consumption and CHP levels in each instant, according to the Demand Response (DR) opportunities. The paper includes a case study with several scenarios of consumption and heat demand in the context of a DR event which specifies a maximum demand level for the consumer.
Resumo:
Urban Computing (UrC) provides users with the situation-proper information by considering context of users, devices, and social and physical environment in urban life. With social network services, UrC makes it possible for people with common interests to organize a virtual-society through exchange of context information among them. In these cases, people and personal devices are vulnerable to fake and misleading context information which is transferred from unauthorized and unauthenticated servers by attackers. So called smart devices which run automatically on some context events are more vulnerable if they are not prepared for attacks. In this paper, we illustrate some UrC service scenarios, and show important context information, possible threats, protection method, and secure context management for people.
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
Power system organization has gone through huge changes in the recent years. Significant increase in distributed generation (DG) and operation in the scope of liberalized markets are two relevant driving forces for these changes. More recently, the smart grid (SG) concept gained increased importance, and is being seen as a paradigm able to support power system requirements for the future. This paper proposes a computational architecture to support day-ahead Virtual Power Player (VPP) bid formation in the smart grid context. This architecture includes a forecasting module, a resource optimization and Locational Marginal Price (LMP) computation module, and a bid formation module. Due to the involved problems characteristics, the implementation of this architecture requires the use of Artificial Intelligence (AI) techniques. Artificial Neural Networks (ANN) are used for resource and load forecasting and Evolutionary Particle Swarm Optimization (EPSO) is used for energy resource scheduling. The paper presents a case study that considers a 33 bus distribution network that includes 67 distributed generators, 32 loads and 9 storage units.