68 resultados para Constraint Handling
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
One of the most difficult problems that face researchers experimenting with complex systems in real world applications is the Facility Layout Design Problem. It relies with the design and location of production lines, machinery and equipment, inventory storage and shipping facilities. In this work it is intended to address this problem through the use of Constraint Logic Programming (CLP) technology. The use of Genetic Algorithms (GA) as optimisation technique in CLP environment is also an issue addressed. The approach aims the implementation of genetic algorithm operators following the CLP paradigm.
Resumo:
O Acidente Vascular Encefálico é uma das principais causas de morte, tornando-se cada vez mais iminente processos de reabilitação que minimizem as sequelas, nomeadamente as limitações do membro superior que dificultam o envolvimento em atividades da vida diária. O Constraint-Induced Movement Therapy, surge como uma abordagem que incrementa o uso do membro superior mais afetado. A presente investigação trata-se de um estudo de casos múltiplos. Pretende-se verificar se existem melhorias na funcionalidade do membro superior mais afetado, analisar em que atividades da vida diária são visíveis melhorias funcionais e compreender se o maior envolvimento nas atividades diárias está diretamente relacionado com a melhoria na capacidade funcional. Pretende-se ainda que os valores obtidos no Wolf Motor Function Test sejam um contributo para a sua validação para a população portuguesa. Utilizou-se um questionário para recolha de dados pessoais e clínicos (amplitudes de movimento, dor e espasticidade); o Wolf Motor Function Test e o Action Research Arm Test para verificar a funcionalidade do membro superior mais afetado; e a Motor Activity Log que avalia o envolvimento em atividades da vida diária. O grupo é constituído por 3 utentes que sofreram um primeiro Acidente Vascular Encefálico até 9 meses de evolução, internados na Santa Casa da Misericórdia de Monção e que cumpriam os critérios de inclusão. O programa foi implementado três horas/dia, durante 10 dias, mantendo a restrição no membro superior menos afetado durante 90% do dia acordado. Como se trata de um estudo de casos múltiplos, analisou-se cada participante individualmente e verificou-se a diferença entre os resultados finais e iniciais para cada uma das variáveis. Os resultados obtidos revelam ganhos na amplitude de movimento, velocidade de execução e capacidade funcional do membro superior mais afetado, nomeadamente nas funções de preensão e pinça da mão, bem como se testemunhou minimização do fenómeno learned nonuse. Verificaram-se ganhos funcionais em todos os participantes nas atividades da vida diária apesar de serem diferentes de participante para participante. Dois participantes afirmaram que voltariam a participar no programa.Conclui-se, assim que a técnica resulta em ganhos funcionais nestes utentes, indicando um caminho alternativo a outras abordagens de reabilitação.
Resumo:
Actualmente, os smartphones e outros dispositivos móveis têm vindo a ser dotados com cada vez maior poder computacional, sendo capazes de executar um vasto conjunto de aplicações desde simples programas de para tirar notas até sofisticados programas de navegação. Porém, mesmo com a evolução do seu hardware, os actuais dispositivos móveis ainda não possuem as mesmas capacidades que os computadores de mesa ou portáteis. Uma possível solução para este problema é distribuir a aplicação, executando partes dela no dispositivo local e o resto em outros dispositivos ligados à rede. Adicionalmente, alguns tipos de aplicações como aplicações multimédia, jogos electrónicos ou aplicações de ambiente imersivos possuem requisitos em termos de Qualidade de Serviço, particularmente de tempo real. Ao longo desta tese é proposto um sistema de execução de código remota para sistemas distribuídos com restrições de tempo-real. A arquitectura proposta adapta-se a sistemas que necessitem de executar periodicamente e em paralelo mesmo conjunto de funções com garantias de tempo real, mesmo desconhecendo os tempos de execução das referidas funções. A plataforma proposta foi desenvolvida para sistemas móveis capazes de executar o Sistema Operativo Android.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
There is an increasing demand for highly dynamic realtime systems where several independently developed applications with different timing requirements can coexist. This paper proposes a protocol to integrate shared resources and precedence constraints among tasks in such systems assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among needed tasks, minimising the cost of blocking.
Resumo:
Due to the growing complexity and adaptability requirements of real-time embedded systems, which often exhibit unrestricted inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand. This paper proposes an iterative refinement approach for a service’s QoS configuration taking into account services’ inter-dependencies and quality constraints, and trading off the achieved solution’s quality for the cost of computation. Extensive simulations demonstrate that the proposed anytime algorithm is able to quickly find a good initial solution and effectively optimises the rate at which the quality of the current solution improves as the algorithm is given more time to run. The added benefits of the proposed approach clearly surpass its reducedoverhead.
Resumo:
With accelerated market volatility, faster response times and increased globalization, business environments are going through a major transformation and firms have intensified their search for strategies which can give them competitive advantage. This requires that companies continuously innovate, to think of new ideas that can be transformed or implemented as products, processes or services, generating value for the firm. Innovative solutions and processes are usually developed by a group of people, working together. A grouping of people that share and create new knowledge can be considered as a Community of Practice (CoP). CoP’s are places which provide a sound basis for organizational learning and encourage knowledge creation and acquisition. Virtual Communities of Practice (VCoP's) can perform a central role in promoting communication and collaboration between members who are dispersed in both time and space. Nevertheless, it is known that not all CoP's and VCoP's share the same levels of performance or produce the same results. This means that there are factors that enable or constrain the process of knowledge creation. With this in mind, we developed a case study in order to identify both the motivations and the constraints that members of an organization experience when taking part in the knowledge creating processes of VCoP's. Results show that organizational culture and professional and personal development play an important role in these processes. No interviewee referred to direct financial rewards as a motivation factor for participation in VCoPs. Most identified the difficulty in aligning objectives established by the management with justification for the time spent in the VCoP. The interviewees also said that technology is not a constraint.
Resumo:
Introdução: O medicamento citotóxico é definido pelas suas características de genotoxicidade, mutagenicidade, carcinogenicidade, teratogenicidade, toxicidade reprodutiva e toxicidade orgânica em baixas doses. Deste modo, existe uma grande preocupação no que concerne ao manuseamento deste tipo de medicamentos, devido aos riscos ocupacionais que podem surtir da exposição a que os profissionais de farmácia envolvidos estão sujeitos. Objectivos: Analisar a realidade da farmácia hospitalar face ao cumprimento das normas e procedimentos preconizados pelas actuais guidelines para o manuseamento seguro de medicamentos citotóxicos, e identificar as lacunas existentes, conduzindo à promoção de práticas centradas na minimização do risco de exposição/contaminação dos profissionais e do ambiente. Material e Métodos: Foi realizada uma pesquisa bibliográfica sistemática sobre o tema, utilizando-se como instrumento de recolha de dados um inquérito por questionário, em que os TDT de Farmácia foram abordados sobre os procedimentos verificados no hospital onde exercem actividade profissional. Resultados: Face ao cumprimento das normas na recepção, armazenamento e transporte de medicamentos citotóxicos, verifica-se que todos os hospitais se encontram acima da média. Apesar desta evidência, é na fase de transporte que se verifica um menor cumprimento. As principais lacunas detectadas foram ao nível da não utilização de EPI nas fases de recepção e armazenamento; a recepção de medicamentos citotóxicos em conjunto com outros medicamentos; a falta de um sistema de ventilação no local de armazenamento e, ainda, ausência de portas de correr e/ou gavetas fechadas nos carros de transporte de medicamentos citotóxicos. Conclusões: Os resultados deste estudo revelam alguma heterogeneidade de procedimentos nos hospitais Portugueses, sugerindo a necessidade de intervenção e reformulação do programa de segurança e gestão de risco desenvolvidos para o manuseamento de citotóxicos.
Resumo:
Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.