24 resultados para Congestion Window (cwnd)
em Instituto Politécnico do Porto, Portugal
Resumo:
In a liberalized electricity market, the Transmission System Operator (TSO) plays a crucial role in power system operation. Among many other tasks, TSO detects congestion situations and allocates the payments of electricity transmission. This paper presents a software tool for congestion management and transmission price determination in electricity markets. The congestion management is based on a reformulated Optimal Power Flow (OPF), whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the dispatch proposed by the market operator. The transmission price computation considers the physical impact caused by the market agents in the transmission network. The final tariff includes existing system costs and also costs due to the initial congestion situation and losses costs. The paper includes a case study for the IEEE 30 bus power system.
Resumo:
This paper analyzes musical opus from the point of view of two mathematical tools, namely the entropy and the multidimensional scaling (MDS). The Fourier analysis reveals a fractional dynamics, but the time rhythm variations are diluted along the spectrum. The combination of time-window entropy and MDS copes with the time characteristics and is well suited to treat a large volume of data. The experiments focus on a large number of compositions classified along three sets of musical styles, namely “Classical”, “Jazz”, and “Pop & Rock” compositions. Without lack of generality, the present study describes the application of the tools and the sets of musical compositions in a methodology leading to clear conclusions, but extensions to other possibilities are straightforward. The results reveal significant differences in the musical styles, demonstrating the feasibility of the proposed strategy and motivating further developments toward a dynamical analysis of musical compositions.
Resumo:
This paper presents a software tool (SIM_CMTP) that solves congestion situations and evaluates the taxes to be paid to the transmission system by market agents. SIM_CMTP provides users with a set of alternative methods for cost allocation and enables the definition of specific rules, according to each market and/or situation needs. With these characteristics, SIM_CMTP can be used as an operation aid for Transmission System Operator (TSO) or Independent System Operator (ISO). Due to its openness, it can also be used as a decision-making support tool for evaluating different options of market rules in competitive market environment, guarantying the economic sustainability of the transmission system.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
Locational Marginal Prices (LMP) are important pricing signals for the participants of competitive electricity markets, as the effects of transmission losses and binding constraints are embedded in LMPs [1],[2]. This paper presents a software tool that evaluates the nodal marginal prices considering losses and congestion. The initial dispatch is based on all the electricity transactions negotiated in the pool and in bilateral contracts. It must be checked if the proposed initial dispatch leads to congestion problems; if a congestion situation is detected, it must be solved. An AC power flow is used to verify if there are congestion situations in the initial dispatch. Whenever congestion situations are detected, they are solved and a feasible dispatch (re-dispatch) is obtained. After solving the congestion problems, the simulator evaluates LMP. The paper presents a case study based on the the 118 IEEE bus test network.
Resumo:
An auction model is used to increase the individual profits for market players with products they do not use. A Financial Transmission Rights Auction has the goal of trade transmission rights between Bidders and helps them raise their own profits. The ISO plays a major rule on keep the system in technical limits without interfere on the auctions offers. In some auction models the ISO decide want bids are implemented on the network, always with the objective maximize the individual profits for all bidders in the auction. This paper proposes a methodology for a Financial Transmission Rights Auction and an informatics application. The application receives offers from the purchase and sale side and considers bilateral contracts as Base Case. This goal is maximize the individual profits within the system in their technical limits. The paper includes a case study for the 30 bus IEEE test case.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
Este projecto surgiu no contexto da solicitação de um dos clientes da empresa Castros Iluminações que pretendia um sistema de iluminação decorativa (baseada em LED) de dois conjuntos de 288 janelas, pertencendo cada conjunto a uma fachada diferente do edifício. Este sistema teria que prever a possibilidade de controlar a cor de cada janela individualmente, dando ao cliente a possibilidade de alterar o ambiente decorativo das fachadas do edifício. A utilização de comunicação sem fios foi justificada pela necessidade de evitar a quantidade enorme de cabos que seria necessário passar utilizando os sistemas comerciais convencionais e a impossibilidade de os esconder. Esta solução foi pensada para ser implementada num edifício com 14 Andares, facto que por si só inviabiliza a passajem de cabos. Para interligar todos os dispositivos de iluminação decorativa com um controlador portátil, e eliminar os problemas ligados à cablagem, foi utilizado o protocolo de comunicações sem fios ZigBee™. A escolha recaiu neste protocolo devido a factores como os seus baixos consumos, simplicidade do protocolo comparativamente com outras redes e o seu baixo custo. No desenvolvimento deste projecto foi utilizada a stack da Microchip©, versão gratuita, disponibilizada na internet e os seus transceivers de comunicação Zigbee™, MRF24j40MA. Para fazer a interface de comunicação com o utilizador, foi desenvolvida uma aplicação de Software para correr em computadores com ambiente Windows™. Esta aplicação foi desenvolvida em Visual Studio™ utilizando a linguagem C#. Foram efectuados alguns testes para se perceber a eficiência e robustez da comunicação ZigBee™ e apesar do número de dispositivos disponíveis para ensaios ser muito reduzido, foi possível verificar que, mesmo funcionando correctamente, o desempenho do sistema poderá ser melhorado, quer seja a nível da gestão das comunicações, quer a nível do software informático para controlo do ambiente decorativo das fachadas do edifício. O sistema, no actual estado de desenvolvimento, permite controlar a cor dos vários dispositivos da rede através do computador, com uma resolução de 24bits. A aplicação desenvolvida em Visual Studio™ permite controlar de forma simples e intuitiva para o utilizador, a cor do material iluminativo dos vários dispositivos da rede.
Resumo:
Broadcast networks that are characterised by having different physical layers (PhL) demand some kind of traffic adaptation between segments, in order to avoid traffic congestion in linking devices. In many LANs, this problem is solved by the actual linking devices, which use some kind of flow control mechanism that either tell transmitting stations to pause (the transmission) or just discard frames. In this paper, we address the case of token-passing fieldbus networks operating in a broadcast fashion and involving message transactions over heterogeneous (wired or wireless) physical layers. For the addressed case, real-time and reliability requirements demand a different solution to the traffic adaptation problem. Our approach relies on the insertion of an appropriate idle time before a station issuing a request frame. In this way, we guarantee that the linking devices’ queues do not increase in a way that the timeliness properties of the overall system turn out to be unsuitable for the targeted applications.
Resumo:
The goal of this study is to analyze the dynamical properties of financial data series from nineteen worldwide stock market indices (SMI) during the period 1995–2009. SMI reveal a complex behavior that can be explored since it is available a considerable volume of data. In this paper is applied the window Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional order systems.
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.