1 resultado para Competing risks, Estimation of predator mortality, Over dispersion, Stochastic modeling
em Instituto Politécnico do Porto, Portugal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (61)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (12)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Boston University Digital Common (3)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (91)
- CentAUR: Central Archive University of Reading - UK (54)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (109)
- Cochin University of Science & Technology (CUSAT), India (16)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (7)
- DigitalCommons@The Texas Medical Center (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (185)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (25)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (118)
- Queensland University of Technology - ePrints Archive (136)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (3)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (9)
- University of Queensland eSpace - Australia (4)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
This paper employs the Lyapunov direct method for the stability analysis of fractional order linear systems subject to input saturation. A new stability condition based on saturation function is adopted for estimating the domain of attraction via ellipsoid approach. To further improve this estimation, the auxiliary feedback is also supported by the concept of stability region. The advantages of the proposed method are twofold: (1) it is straightforward to handle the problem both in analysis and design because of using Lyapunov method, (2) the estimation leads to less conservative results. A numerical example illustrates the feasibility of the proposed method.