4 resultados para Coatings Grout
em Instituto Politécnico do Porto, Portugal
Resumo:
Com o passar dos anos, as obras mais sublimes, começam a mostrar marcas subtis ou profundas de deterioração, como por exemplo: fissurações e defeitos associados à humidade. Estes são reflexo de fatores externos, como fungos, a própria atmosfera reativa, mudanças climatéricas e, até mesmo, a ação do homem. Neste seguimento pretende-se estudar as principais argamassas utilizadas na reabilitação de edifícios antigos, principalmente, as argamassas utilizadas no decorrer das obras ao longo do estágio, com o objetivo de comparar as suas caraterísticas, sendo estas argamassas tradicionais e pré-fabricadas. Foram feitos vários ensaios para determinar as suas resistências mecânicas, nomeadamente, o ensaio de resistência à flexão e compressão em diferentes idades após a confeção das argamassas, e ensaios para determinar a sua durabilidade como o ensaio de absorção da água por capilaridade; ensaio de absorção de água por imersão às 48horas (pressão atmosférica); ensaio para determinação do teor de água às 48horas e o ensaio de arrancamento (pull-off). A análise dos resultados mostrou que as argamassas adquirem mais resistência com o passar do tempo após a sua confeção, e que as argamassas dos provetes obtidos de forma tradicional, constituídos por argamassa de cal Hidráulica (HL5) e argamassa de cimento, apresentam melhores resultados do que a argamassa pré-fabricada (weber.cal classic).
Resumo:
The tribological response of multilayer micro/nanocrystalline diamond coatings grown by the hot filament CVD technique is investigated. These multigrade systems were tailored to comprise a starting microcrystalline diamond (MCD) layer with high adhesion to a silicon nitride (Si3N4) ceramic substrate, and a top nanocrystalline diamond (NCD) layer with reduced surface roughness. Tribological tests were carried out with a reciprocating sliding configuration without lubrication. Such composite coatings exhibit a superior critical load before delamination (130–200 N), when compared to the mono- (60–100 N) and bilayer coatings (110 N), considering ∼10 µm thick films. Regarding the friction behaviour, a short-lived initial high friction coefficient was followed by low friction regimes (friction coefficients between 0.02 and 0.09) as a result of the polished surfaces tailored by the tribological solicitation. Very mild to mild wear regimes (wear coefficient values between 4.1×10−8 and 7.7×10−7 mm3 N−1 m−1) governed the wear performance of the self-mated multilayer coatings when subjected to high-load short-term tests (60–200 N; 2 h; 86 m) and medium-load endurance tests (60 N; 16 h; 691 m).
Resumo:
Ball rotating micro-abrasion tribometers are commonly used to carry out wear tests on thin hard coatings. In these tests, different kinds of abrasives were used, as alumina (Al2O3), silicon carbide (SiC) or diamond. In each kind of abrasive, several particle sizes can be used. Some studies were developed in order to evaluate the influence of the abrasive particle shape in the micro-abrasion process. Nevertheless, the particle size was not well correlated with the material removed amount and wear mechanisms. In this work, slurry of SiC abrasive in distilled water was used, with three different particles size. Initial surface topography was accessed by atomic force microscopy (AFM). Coating hardness measurements were performed with a micro-hardness tester. In order to evaluate the wear behaviour, a TiAlSiN thin hard film was used. The micro-abrasion tests were carried out with some different durations. The abrasive effect of the SiC particles was observed by scanning electron microscopy (SEM) both in the films (hard material) as in the substrate (soft material), after coating perforation. Wear grooves and removed material rate were compared and discussed.
Resumo:
The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.