4 resultados para Classification of protease inhibitors
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
Purpose: To describe and compare the content of instruments that assess environmental factors using the International Classification of Functioning, Disability and Health (ICF). Methods: A systematic search of PubMed, CINAHL and PEDro databases was conducted using a pre-determined search strategy. The identified instruments were screened independently by two investigators, and meaningful concepts were linked to the most precise ICF category according to published linking rules. Results: Six instruments were included, containing 526 meaningful concepts. Instruments had between 20% and 98% of items linked to categories in Chapter 1. The highest percentage of items from one instrument linked to categories in Chapters 2–5 varied between 9% and 50%. The presence or absence of environmental factors in a specific context is assessed in 3 instruments, while the other 3 assess the intensity of the impact of environmental factors. Discussion: Instruments differ in their content, type of assessment, and have several items linked to the same ICF category. Most instruments primarily assess products and technology (Chapter 1), highlighting the need to deepen the discussion on the theory that supports the measurement of environmental factors. This discussion should be thorough and lead to the development of methodologies and new tools that capture the underlying concepts of the ICF.
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.
Resumo:
This chapter analyzes the signals captured during impacts and vibrations of a mechanical manipulator. Eighteen signals are captured and several metrics are calculated between them, such as the correlation, the mutual information and the entropy. A sensor classification scheme based on the multidimensional scaling technique is presented.