2 resultados para Chlorinated ethylenes

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p’-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to verify the possibility to use a polarized graphite electrode as an electron donor for the reductive dechlorination of 1,2-dichloroethane, an ubiquitous groundwater contaminant. The rate of 1,2-DCA dechlorination almost linearly increased by decreasing the set cathode potential over a broad range of set cathode potentials (i.e., from −300 mV to −900 mV vs. the standard hydrogen electrode). This process was primarily dependent on electrolytic H2 generation. On the other hand, reductive dechlorination proceeded (although quite slowly) with a very high Coulombic efficiency (near 70%) at a set cathode potential of −300 mV, where no H2 production occurred. Under this condition, reductive dechlorination was likely driven by direct electron uptake from the surface of the polarized electrode. Taken as a whole, this study further extends the range of chlorinated contaminants which can be treated with bioelectrochemical systems.