3 resultados para Characterizing Network Traffic
em Instituto Politécnico do Porto, Portugal
Resumo:
Mathematical Program with Complementarity Constraints (MPCC) finds many applications in fields such as engineering design, economic equilibrium and mathematical programming theory itself. A queueing system model resulting from a single signalized intersection regulated by pre-timed control in traffic network is considered. The model is formulated as an MPCC problem. A MATLAB implementation based on an hyperbolic penalty function is used to solve this practical problem, computing the total average waiting time of the vehicles in all queues and the green split allocation. The problem was codified in AMPL.
Resumo:
The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.
Resumo:
This paper presents the first phase of the redevelopment of the Electric Vehicle Scenario Simulator (EVeSSi) tool. A new methodology to generate traffic demand scenarios for the Simulation of Urban MObility (SUMO) tool for urban traffic simulation is described. This methodology is based on a Portugal census database to generate a synthetic population for a given area under study. A realistic case study of a Portuguese city, Vila Real, is assessed. For this area the road network was created along with a synthetic population and public transport. The traffic results were obtained and an electric buses fleet was evaluated assuming that the actual fleet would be replaced in a near future. The energy requirements to charge the electric fleet overnight were estimated in order to evaluate the impacts that it would cause in the local electricity network.