5 resultados para Characteristic equation
em Instituto Politécnico do Porto, Portugal
Resumo:
Este trabalho é realizado no domínio das obras de engenharia, área onde o desmonte de rocha com recurso a explosivos em obras rodoviárias é uma actividade específica e consistiu no acompanhamento e execução de três obras rodoviárias de média e grande dimensão. A necessidade de executar escavações, recorrendo a técnicas de desmonte cuidadoso de contorno, onde o plano de corte do talude final deve obedecer a requisitos de localização, alinhamento, inclinação, estabilidade e também estéticos, acrescendo a isto a necessidade de optimizar os meios envolvidos, obriga a que esta actividade seja encarada de uma forma sistematizada, visando o racional aproveitamento de recursos. A execução desta actividade requer conhecimentos no domínio das técnicas de desmonte de contorno, dos explosivos, do mecanismo de rotura de rochas, da operação de perfuração e da geomecânica dos maciços. A abordagem deste trabalho incide sobre a técnica denominada de pré‐corte e tem como objectivo encontrar uma equação característica que permita relacionar diferentes parâmetros envolvidos nesta actividade. Este objectivo é alcançado recorrendo à correlação entre equações relativas à pressão de detonação, à pressão no furo e ao espaçamento entre furos consecutivos, desenvolvidas por outros autores. Desta forma obteve‐se uma equação que relaciona parâmetros relativos ao maciço rochoso (resistência à tracção), ao explosivo (velocidade de detonação e densidade) e ao diagrama de fogo (concentração de carga – volume de explosivo e comprimento do furo – volume do furo). A comparação entre os valores destes parâmetros obtidos na produção e os obtidos com recurso à equação característica permite concluir que a sua aplicação para execução de futuras obras possibilita uma optimização dos meios envolvidos.
Resumo:
In this paper an algorithm for the calculation of the root locus of fractional linear systems is presented. The proposed algorithm takes advantage of present day computational resources and processes directly the characteristic equation, avoiding the limitations revealed by standard methods. The results demonstrate the good performance for different types of expressions.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
Resumo:
The study of agent diffusion in biological tissues is very important to understand and characterize the optical clearing effects and mechanisms involved: tissue dehydration and refractive index matching. From measurements made to study the optical clearing, it is obvious that light scattering is reduced and that the optical properties of the tissue are controlled in the process. On the other hand, optical measurements do not allow direct determination of the diffusion properties of the agent in the tissue and some calculations are necessary to estimate those properties. This fact is imposed by the occurrence of two fluxes at optical clearing: water typically directed out of and agent directed into the tissue. When the water content in the immersion solution is approximately the same as the free water content of the tissue, a balance is established for water and the agent flux dominates. To prove this concept experimentally, we have measured the collimated transmittance of skeletal muscle samples under treatment with aqueous solutions containing different concentrations of glucose. After estimating the mean diffusion time values for each of the treatments we have represented those values as a function of glucose concentration in solution. Such a representation presents a maximum diffusion time for a water content in solution equal to the tissue free water content. Such a maximum represents the real diffusion time of glucose in the muscle and with this value we could calculate the corresponding diffusion coefficient.