3 resultados para Canopy crane
em Instituto Politécnico do Porto, Portugal
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
The main purpose of this work was the development of procedures for the simulation of atmospheric ows over complex terrain, using OpenFOAM. For this aim, tools and procedures were developed apart from this code for the preprocessing and data extraction, which were thereafter applied in the simulation of a real case. For the generation of the computational domain, a systematic method able to translate the terrain elevation model to a native OpenFOAM format (blockMeshDict) was developed. The outcome was a structured mesh, in which the user has the ability to de ne the number of control volumes and its dimensions. With this procedure, the di culties of case set up and the high computation computational e ort reported in literature associated to the use of snappyHexMesh, the OpenFOAM resource explored until then for the accomplishment of this task, were considered to be overwhelmed. Developed procedures for the generation of boundary conditions allowed for the automatic creation of idealized inlet vertical pro les, de nition of wall functions boundary conditions and the calculation of internal eld rst guesses for the iterative solution process, having as input experimental data supplied by the user. The applicability of the generated boundary conditions was limited to the simulation of turbulent, steady-state, incompressible and neutrally strati ed atmospheric ows, always recurring to RaNS (Reynolds-averaged Navier-Stokes) models. For the modelling of terrain roughness, the developed procedure allowed to the user the de nition of idealized conditions, like an uniform aerodynamic roughness length or making its value variable as a function of topography characteristic values, or the using of real site data, and it was complemented by the development of techniques for the visual inspection of generated roughness maps. The absence and the non inclusion of a forest canopy model limited the applicability of this procedure to low aerodynamic roughness lengths. The developed tools and procedures were then applied in the simulation of a neutrally strati ed atmospheric ow over the Askervein hill. In the performed simulations was evaluated the solution sensibility to di erent convection schemes, mesh dimensions, ground roughness and formulations of the k - ε and k - ω models. When compared to experimental data, calculated values showed a good agreement of speed-up in hill top and lee side, with a relative error of less than 10% at a height of 10 m above ground level. Turbulent kinetic energy was considered to be well simulated in the hill windward and hill top, and grossly predicted in the lee side, where a zone of ow separation was also identi ed. Despite the need of more work to evaluate the importance of the downstream recirculation zone in the quality of gathered results, the agreement between the calculated and experimental values and the OpenFOAM sensibility to the tested parameters were considered to be generally in line with the simulations presented in the reviewed bibliographic sources.
Resumo:
Este trabalho foi realizado com o apoio, e em colaboração da empresa Flexcrane, que constrói e comercializa soluções flexíveis de pontes rolantes para cargas ligeiras. Com cargas máximas de 2 toneladas estas pontes e seus caminhos de rolamento são construídas essencialmente enformados a frio. O objetivo deste trabalho é a verificação numérica e experimental das cargas que este tipo de estrutura suporta, nas suas diferentes configurações. Numa aproximação por engenharia inversa, com a realização deste trabalho, foi possível determinar a carga admissível das vigas compostas utilizadas, assim como o seu comportamento quando em carga. Para obtenção destes resultados foram realizadas simulações computacionais recorrendo ao método de elementos finitos, utilizando para isso o software Ansys Workbench e ainda ensaios experimentais que permitiram validar os resultados obtidos numericamente e consolidar o conhecimento sobre o comportamento desta solução comercial. Por ser de construção modular, são possíveis diferentes combinações para o produto final, por esta razão foram estudados numericamente diferentes configurações possíveis, com e sem reforços. Foi realizada a validação experimental para a configuração mais usual, fazendo recurso a um dispositivo para ensaio de estruturas e componentes, pertencente ao Isep. Foi ainda utilizada a técnica extensométrica para avaliar as tensões em pontos selecionados e compara-los com os obtidos numericamente. Concluiu-se pelo ótimo desempenho dos produtos Flexcrane.