45 resultados para Calculus of tensors.
em Instituto Politécnico do Porto, Portugal
Resumo:
O trabalho apresentado centra-se na determinação dos custos de construção de condutas de pequenos e médios diâmetros em Polietileno de Alta Densidade (PEAD) para saneamento básico, tendo como base a metodologia descrita no livro Custos de Construção e Exploração – Volume 9 da série Gestão de Sistemas de Saneamento Básico, de Lencastre et al. (1994). Esta metodologia descrita no livro já referenciado, nos procedimentos de gestão de obra, e para tal foram estimados custos unitários de diversos conjuntos de trabalhos. Conforme Lencastre et al (1994), “esses conjuntos são referentes a movimentos de terras, tubagens, acessórios e respetivos órgãos de manobra, pavimentações e estaleiro, estando englobado na parte do estaleiro trabalhos acessórios correspondentes à obra.” Os custos foram obtidos analisando vários orçamentos de obras de saneamento, resultantes de concursos públicos de empreitadas recentemente realizados. Com vista a tornar a utilização desta metodologia numa ferramenta eficaz, foram organizadas folhas de cálculo que possibilitam obter estimativas realistas dos custos de execução de determinada obra em fases anteriores ao desenvolvimento do projeto, designadamente numa fase de preparação do plano diretor de um sistema ou numa fase de elaboração de estudos de viabilidade económico-financeiros, isto é, mesmo antes de existir qualquer pré-dimensionamento dos elementos do sistema. Outra técnica implementada para avaliar os dados de entrada foi a “Análise Robusta de Dados”, Pestana (1992). Esta metodologia permitiu analisar os dados mais detalhadamente antes de se formularem hipóteses para desenvolverem a análise de risco. A ideia principal é o exame bastante flexível dos dados, frequentemente antes mesmo de os comparar a um modelo probabilístico. Assim, e para um largo conjunto de dados, esta técnica possibilitou analisar a disparidade dos valores encontrados para os diversos trabalhos referenciados anteriormente. Com os dados recolhidos, e após o seu tratamento, passou-se à aplicação de uma metodologia de Análise de Risco, através da Simulação de Monte Carlo. Esta análise de risco é feita com recurso a uma ferramenta informática da Palisade, o @Risk, disponível no Departamento de Engenharia Civil. Esta técnica de análise quantitativa de risco permite traduzir a incerteza dos dados de entrada, representada através de distribuições probabilísticas que o software disponibiliza. Assim, para por em prática esta metodologia, recorreu-se às folhas de cálculo que foram realizadas seguindo a abordagem proposta em Lencastre et al (1994). A elaboração e a análise dessas estimativas poderão conduzir à tomada de decisões sobre a viabilidade da ou das obras a realizar, nomeadamente no que diz respeito aos aspetos económicos, permitindo uma análise de decisão fundamentada quanto à realização dos investimentos.
Resumo:
Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.
Resumo:
This survey intends to report some of the major documents and events in the area of fractional calculus that took place since 1974 up to the present date.
Resumo:
In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.
Resumo:
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Resumo:
This paper applies Pseudo Phase Plane (PPP) and Fractional Calculus (FC) mathematical tools for modeling world economies. A challenging global rivalry among the largest international economies began in the early 1970s, when the post-war prosperity declined. It went on, up to now. If some worrying threatens may exist actually in terms of possible ambitious military aggression, invasion, or hegemony, countries’ PPP relative positions can tell something on the current global peaceful equilibrium. A global political downturn of the USA on global hegemony in favor of Asian partners is possible, but can still be not accomplished in the next decades. If the 1973 oil chock has represented the beginning of a long-run recession, the PPP analysis of the last four decades (1972–2012) does not conclude for other partners’ global dominance (Russian, Brazil, Japan, and Germany) in reaching high degrees of similarity with the most developed world countries. The synergies of the proposed mathematical tools lead to a better understanding of the dynamics underlying world economies and point towards the estimation of future states based on the memory of each time series.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
This paper studies the DNA code of eleven mammals from the perspective of fractional dynamics. The application of Fourier transform and power law trendlines leads to a categorical representation of species and chromosomes. The DNA information reveals long range memory characteristics.
Resumo:
This paper analyses earthquake data in the perspective of dynamical systems and fractional calculus (FC). This new standpoint uses Multidimensional Scaling (MDS) as a powerful clustering and visualization tool. FC extends the concepts of integrals and derivatives to non-integer and complex orders. MDS is a technique that produces spatial or geometric representations of complex objects, such that those objects that are perceived to be similar in some sense are placed on the MDS maps forming clusters. In this study, over three million seismic occurrences, covering the period from January 1, 1904 up to March 14, 2012 are analysed. The events are characterized by their magnitude and spatiotemporal distributions and are divided into fifty groups, according to the Flinn–Engdahl (F–E) seismic regions of Earth. Several correlation indices are proposed to quantify the similarities among regions. MDS maps are proven as an intuitive and useful visual representation of the complex relationships that are present among seismic events, which may not be perceived on traditional geographic maps. Therefore, MDS constitutes a valid alternative to classic visualization tools for understanding the global behaviour of earthquakes.
Resumo:
Fractional calculus generalizes integer order derivatives and integrals. Memristor systems generalize the notion of electrical elements. Both concepts were shown to model important classes of phenomena. This paper goes a step further by embedding both tools in a generalization considering complex-order objects. Two complex operators leading to real-valued results are proposed. The proposed class of models generate a broad universe of elements. Several combinations of values are tested and the corresponding dynamical behavior is analyzed.
Resumo:
Discrete time control systems require sample- and-hold circuits to perform the conversion from digital to analog. Fractional-Order Holds (FROHs) are an interpolation between the classical zero and first order holds and can be tuned to produce better system performance. However, the model of the FROH is somewhat hermetic and the design of the system becomes unnecessarily complicated. This paper addresses the modelling of the FROHs using the concepts of Fractional Calculus (FC). For this purpose, two simple fractional-order approximations are proposed whose parameters are estimated by a genetic algorithm. The results are simple to interpret, demonstrating that FC is a useful tool for the analysis of these devices.
Resumo:
The goal of this study is to analyze the dynamical properties of financial data series from nineteen worldwide stock market indices (SMI) during the period 1995–2009. SMI reveal a complex behavior that can be explored since it is available a considerable volume of data. In this paper is applied the window Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional order systems.
Resumo:
This paper investigates the use of multidimensional scaling in the evaluation of fractional system. Several algorithms are analysed based on the time response of the closed loop system under the action of a reference step input signal. Two alternative performance indices, based on the time and frequency domains, are tested. The numerical experiments demonstrate the feasibility of the proposed visualization method.
Resumo:
This paper studies fractional variable structure controllers. Two cases are considered namely, the sliding reference model and the control action, that are generalized from integer into fractional orders. The test bed consists in a mechanical manipulator and the effect of the fractional approach upon the system performance is evaluated. The results show that fractional dynamics, both in the switching surface and the control law are important design algorithms in variable structure controllers.
Resumo:
Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the maximum number of child routers and the maximum number of child nodes for each parent router. Using Network Calculus, we derive “plug-and-play” expressions for the endto- end delay bounds, buffering and bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of a simple and effective methodology for the design of such WSNs.