3 resultados para Cadeias de Markov. Algoritmos genéticos

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica